ترغب بنشر مسار تعليمي؟ اضغط هنا

Competing effects of Hunds splitting and symmetry-breaking perturbations on electronic order in Pb$_{1-x}$Sn$_{x}$Te

53   0   0.0 ( 0 )
 نشر من قبل Sarbajaya Kundu
 تاريخ النشر 2017
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We study the effect of a uniform external magnetization on p-wave superconductivity on the (001) surface of the crystalline topological insulator(TCI) Pb$_{1-x}$Sn$_{x}$Te. It was shown by us in an earlier work that a chiral p-wave finite momentum pairing (FFLO) state can be stabilized in this system in the presence of weak repulsive interparticle interactions. In particular, the superconducting instability is very sensitive to the Hunds interaction in the multiorbital TCI, and no instabilities are found to be possible for the wrong sign of the Hunds splitting. Here we show that for a finite Hunds splitting of interactions, a significant value of the external magnetization is needed to degrade the surface superconductivity, while in the absence of the Hunds interaction, an arbitrarily small external magnetization can destroy the superconductivity. This implies that multiorbital effects in this system play an important role in stabilizing electronic order on the surface.



قيم البحث

اقرأ أيضاً

83 - S.Kundu , V.Tripathi 2017
We study the effect of Hunds splitting of repulsive interactions on electronic phase transitions in the multiorbital topological crystalline insulator Pb$_{1-x}$Sn$_{x}$Te, when the chemical potential is tuned to the vicinity of low-lying Type-II Van Hove singularities. Nontrivial Berry phases associated with the Bloch states impart momentum-dependence to electron interactions in the relevant band. We use a multipatch parquet renormalization group (RG) analysis for studying the competition of different electronic phases, and find that if the dominant fixed-point interactions correspond to antiparallel spin configurations, then a chiral $p$-wave Fulde-Ferrell-Larkin-Ovchinnikov(FFLO) state is favored, otherwise, none of the commonly encountered electronic instabilities occur within the one-loop parquet RG approach.
The ratio of the Zeeman splitting to the cyclotron energy ($M=Delta E_Z / hbar omega_c$), which characterizes the relative strength of the spin-orbit interaction in crystals, is examined for the narrow gap IV-VI semiconductors PbTe, SnTe, and their a lloy Pb$_{1-x}$Sn$_x$Te on the basis of the multiband $kcdot p$ theory. The inverse mass $alpha$, the g-factor $g$, and $M$ are calculated numerically by employing the relativistic empirical tight-binding band calculation. On the other hand, a simple but exact formula of $M$ is obtained for the six-band model based on the group theoretical analysis. It is shown that $M<1$ for PbTe and $M>1$ for SnTe, which are interpreted in terms of the relevance of the interband couplings due to the crystalline spin-orbit interaction. It is clarified both analytically and numerically that $M=1$ just at the band inversion point, where the transition from trivial to nontrivial topological crystalline insulator occurs. By using this property, one can detect the transition point only with the bulk measurements. It is also proposed that $M$ is useful to evaluate quantitatively a degree of the Dirac electrons in solids.
The picture of how a gap closes in a semiconductor has been radically transformed by topological concepts. Instead of the gap closing and immediately re-opening, topological arguments predict that, in the absence of inversion symmetry, a metallic pha se protected by Weyl nodes persists over a finite interval of the tuning parameter (e.g. pressure $P$) . The gap re-appears when the Weyl nodes mutually annihilate. We report evidence that Pb$_{1-x}$Sn$_x$Te exhibits this topological metallic phase. Using pressure to tune the gap, we have tracked the nucleation of a Fermi surface droplet that rapidly grows in volume with $P$. In the metallic state we observe a large Berry curvature which dominates the Hall effect. Moreover, a giant negative magnetoresistance is observed in the insulating side of phase boundaries, in accord with emph{ab initio} calculations. The results confirm the existence of a topological metallic phase over a finite pressure interval.
We report measurements of the thermoelectric power (TEP) for a series of Pb(1-x)Tl(x)Te crystals with x = 0.0 to 1.3%. Although the TEP is very large for x = 0.0, using a single band analysis based on older work for dilute magnetic alloys we do find evidence for a Kondo contribution of 11 - 18 uV/K. This analysis suggests that Tk is ~ 50 - 70 K, a factor 10 higher than previously thought.
We performed resistance measurements on Fe$_{1+delta-x}$Cu$_{x}$Te with $x_{EDX}leq 0.06$ in the presence of in-plane applied magnetic fields, revealing a resistance anisotropy that can be induced at a temperature far below the structural and magneti c zero-field transition temperatures. The observed resistance anisotropy strongly depends on the field orientation with respect to the crystallographic axes, as well as on the field-cooling history. Our results imply a correlation between the observed features and the low-temperature magnetic order. Hysteresis in the angle-dependence indicates a strong pinning of the magnetic order within a temperature range that varies with the Cu content. The resistance anisotropy vanishes at different temperatures depending on whether an external magnetic field or a remnant field is present: the closing temperature is higher in the presence of an external field. For $x_{EDX} = 0.06$ the resistance anisotropy closes above the structural transition, at the same temperature at which the zero-field short-range magnetic order disappears and the sample becomes paramagnetic. Thus we suggest that under an external magnetic field the resistance anisotropy mirrors the magnetic order parameter. We discuss similarities to nematic order observed in other iron pnictide materials.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا