ترغب بنشر مسار تعليمي؟ اضغط هنا

Explaining LIGOs observations via isolated binary evolution with natal kicks

65   0   0.0 ( 0 )
 نشر من قبل Daniel Wysocki
 تاريخ النشر 2017
  مجال البحث فيزياء
والبحث باللغة English
 تأليف D. Wysocki




اسأل ChatGPT حول البحث

We compare binary evolution models with different assumptions about black-hole natal kicks to the first gravitational-wave observations performed by the LIGO detectors. Our comparisons attempt to reconcile merger rate, masses, spins, and spin-orbit misalignments of all current observations with state-of-the-art formation scenarios of binary black holes formed in isolation. We estimate that black holes (BHs) should receive natal kicks at birth of the order of $sigmasimeq 200$ (50) km/s if tidal processes do (not) realign stellar spins. Our estimate is driven by two simple factors. The natal kick dispersion $sigma$ is bounded from above because large kicks disrupt too many binaries (reducing the merger rate below the observed value). Conversely, the natal kick distribution is bounded from below because modest kicks are needed to produce a range of spin-orbit misalignments. A distribution of misalignments increases our models compatibility with LIGOs observations, if all BHs are likely to have natal spins. Unlike related work which adopts a concrete BH natal spin prescription, we explore a range of possible BH natal spin distributions. Within the context of our models, for all of the choices of $sigma$ used here and within the context of one simple fiducial parameterized spin distribution, observations favor low BH natal spin.



قيم البحث

اقرأ أيضاً

Some fraction of compact binaries that merge within a Hubble time may have formed from two massive stars in isolation. For this isolated-binary formation channel, binaries need to survive two supernova (SN) explosions in addition to surviving common- envelope evolution. For the SN explosions, both the mass loss and natal kicks change the orbital characteristics, producing either a bound or unbound binary. We show that gravitational waves (GWs) may be produced not only from the core-collapse SN process, but also from the SN mass loss and SN natal kick during the pre-SN to post-SN binary transition. We model the dynamical evolution of a binary at the time of the second SN explosion with an equation of motion that accounts for the finite timescales of the SN mass loss and the SN natal kick. From the dynamical evolution of the binary, we calculate the GW burst signals associated with the SN natal kicks. We find that such GW bursts may be of interest to future mid-band GW detectors like DECIGO. We also find that the energy radiated away from the GWs emitted due to the SN mass loss and natal kick may be a significant fraction, ${gtrsim}10%$, of the post-SN binarys orbital energy. For unbound post-SN binaries, the energy radiated away in GWs tends to be higher than that of bound binaries.
The origin of ultra-wide massive binaries (orbital separations $10^3-2times 10^5$~AU) and their properties are not well characterized nor understood. Here we use the second Gaia data release to search for wide astrometric companions to Galactic O-B5 stars which share similar parallax and proper motion with the primaries. Using the data we characterize the frequency and properties of such binaries. We find an ultra-wide multiplicity fraction of $4.4pm0.5$ per cent, to our completeness limit (up to $approx 17$~mag; down to G-stars at distances of 0.3-2~kpc, excluding stars in clusters). The secondary mass-function is generally consistent with a Kroupa initial stellar function; if extrapolated to lower mass companion stars we then might expect a wide-binary fraction of $sim 27pm5%$. In addition we use these data as a verification sample to test the existence of ultra-wide binaries among neutron stars (NSs) and black holes (BHs). We propose that the discovery of such binary can provide unique constraints on the weakest natal kicks possible for NSs/BHs. If a compact object is formed in an ultra-wide binary and receives a very-low natal kick, such a binary should survive as a common proper motion pair. We therefore use Gaia data to search for ultra-wide companions to pulsars (normal and millisecond ones) and X-ray binaries. We find no reliable pairs. Future data could potentially provide stringent constraints through this method.
Based on recent results from three-dimensional supernova simulations and semi-analytical parametrised models, we develop analytical prescriptions for the dependence of the mass of neutron stars and black holes and the natal kicks, if any, on the pre- supernova carbon-oxygen core and helium shell masses. Our recipes are probabilistic rather than deterministic in order to account for the intrinsic stochasticity of stellar evolution and supernovae. We anticipate that these recipes will be particularly useful for rapid population synthesis, and we illustrate their application to distributions of remnant masses and kicks for a population of single stars.
In this work we study the formation of the first two black hole-neutron star (BHNS) mergers detected in gravitational waves (GW200115 and GW200105) from massive stars in wide isolated binary systems - the isolated binary evolution channel. We use 560 BHNS binary population synthesis model realizations from Broekgaarden et al. (2021a) and show that the system properties (chirp mass, component masses and mass ratios) of both GW200115 and GW200105 match predictions from the isolated binary evolution channel. We also show that most model realizations can account for the local BHNS merger rate densities inferred by LIGO-Virgo. However, to simultaneously also match the inferred local merger rate densities for BHBH and NSNS systems we find we need models with moderate kick velocities ($sigmalesssim 10^2,rm{km},rm{s}^{-1}$) or high common-envelope efficiencies ($alpha_{rm{CE}}gtrsim 2$) within our model explorations. We conclude that the first two observed BHNS mergers can be explained from the isolated binary evolution channel for reasonable model realizations.
We investigate the conditions for radio emission in rotating and oscillating magnetars, by focusing on the main physical processes determining the position of their death-lines in the P-dot{P} diagram, i.e. of those lines that separate the regions wh ere the neutron star may be radio-loud or radio-quiet. After using the general relativistic expression for the electromagnetic scalar potential in the magnetar magnetosphere, we find that larger compactness parameters of the star as well as larger inclination angles between the rotation axis and the magnetic moment produce death-lines well above the majority of known magnetars. This is consistent with the observational evidence of no regular radio emission from the magnetars in the frequency range typical for the ordinary pulsars. On the contrary, when oscillations of the magnetar are taken into account, the death-lines shift downward and the conditions necessary for the generation of radio emission in the magnetosphere are met. Present observations showing a close connection between the burst activity of magnetars and the generation of the radio emission in the magnetar magnetosphere are naturally accounted for within our interpretation.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا