ترغب بنشر مسار تعليمي؟ اضغط هنا

The XXL Survey XIX. A realistic population of simulated X-ray AGN: Comparison of models with observations

101   0   0.0 ( 0 )
 نشر من قبل Elias Koulouridis Dr.
 تاريخ النشر 2017
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Modern cosmological simulations rely heavily on feedback from active galactic nuclei (AGN) in order to stave off overcooling in massive galaxies and galaxy groups and clusters. An important independent test is whether or not the simulations capture the broad demographics of the observed AGN population. Here, we have used the cosmo-OWLS suite of cosmological hydrodynamical simulations to produce realistic synthetic catalogs of X-ray AGN out to $z$=3, with the aim of comparing the catalogs to the observed X-ray AGN population in the XXL survey and other recent surveys. We focused on the unabsorbed X-ray luminosity function (XLF), the Eddington ratio distribution, the black hole mass function, and the projected clustering of X-ray AGN. To compute the unabsorbed XLF of the simulated AGN, we used recent empirically-determined bolometric corrections. We show that the simulated AGN sample accurately reproduces the observed XLF over 3 orders of magnitude in X-ray luminosity in all redshift bins. To compare to the observed Eddington ratio distribution and the clustering of AGN, we produced detailed XMM-Newton-detected catalogs of the simulated AGN. This requires the production of synthetic X-ray images extracted from light cones of the simulations that fold in the relevant instrumental effects of XMM-Newton. We apply a luminosity- and redshift-dependent obscuration function for the AGN and employ the same AGN detection algorithm as used for the real XXL survey. We demonstrate that the detected population of simulated AGN reproduces the observed Eddington ratio distribution and projected clustering from XXL quite well. We conclude that the simulations have a broadly realistic population of AGN and that our synthetic X-ray AGN catalogs should be useful for interpreting additional trends and as a helpful tool for quantifying AGN contamination in galaxy group and cluster X-ray surveys.



قيم البحث

اقرأ أيضاً

We systematically analyze X-ray variability of active galactic nuclei (AGNs) in the 7~Ms textit{Chandra} Deep Field-South survey. On the longest timescale ($approx~17$ years), we find only weak (if any) dependence of X-ray variability amplitudes on e nergy bands or obscuration. We use four different power spectral density (PSD) models to fit the anti-correlation between normalized excess variance ($sigma^2_{rm nxv}$) and luminosity, and obtain a best-fit power law index $beta=1.16^{+0.05}_{-0.05}$ for the low-frequency part of AGN PSD. We also divide the whole light curves into 4 epochs in order to inspect the dependence of $sigma^2_{rm nxv}$ on these timescales, finding an overall increasing trend. The analysis of these shorter light curves also infers a $beta$ of $sim 1.3$ that is consistent with the above-derived $beta$, which is larger than the frequently-assumed value of $beta=1$. We then investigate the evolution of $sigma^2_{rm nxv}$. No definitive conclusion is reached due to limited source statistics but, if present, the observed trend goes in the direction of decreasing AGN variability at fixed luminosity toward large redshifts. We also search for transient events and find 6 notable candidate events with our considered criteria. Two of them may be a new type of fast transient events, one of which is reported here for the first time. We therefore estimate a rate of fast outbursts $langledot{N}rangle = 1.0^{+1.1}_{-0.7}times 10^{-3}~rm galaxy^{-1}~yr^{-1}$ and a tidal disruption event~(TDE) rate $langledot{N}_{rm TDE}rangle=8.6^{+8.5}_{-4.9}times 10^{-5}~rm galaxy^{-1}~yr^{-1}$ assuming the other four long outbursts to be TDEs.
70 - O. Melnyk , A. Elyiv , V. Smolcic 2017
This work is part of a series of studies focusing on the environment and the properties of the X-ray selected active galactic nuclei (AGN) population from the XXL survey. The present survey, given its large area, continuity, extensive multiwavelength coverage, and large-scale structure information, is ideal for this kind of study. Here, we focus on the XXL-South (XXL-S) field. Our main aim is to study the environment of the various types of X-ray selected AGN and investigate its possible role in AGN triggering and evolution. We studied the large-scale (>1 Mpc) environment up to redshift z=1 using the nearest neighbour distance method to compare various pairs of AGN types. We also investigated the small-scale environment (<0.4 Mpc) by calculating the local overdensities of optical galaxies. In addition, we built a catalogue of AGN concentrations with two or more members using the hierarchical clustering method and we correlated them with the X-ray galaxy clusters detected in the XXL survey. It is found that radio detected X-ray sources are more obscured than non-radio ones, though not all radio sources are obscured AGN. We did not find any significant differences in the large-scale clustering between luminous and faint X-ray AGN, or between obscured and unobscured ones, or between radio and non-radio sources. At local scales (<0.4 Mpc), AGN typically reside in overdense regions, compared to non-AGN; however, no differences were found between the various types of AGN. A majority of AGN concentrations with two or more members are found in the neighbourhood of X-ray galaxy clusters within <25-45 Mpc. Our results suggest that X-ray AGN are typically located in supercluster filaments, but they are also found in over- and underdense regions.
This paper presents a survey of X-ray selected active galactic nuclei (AGN) with optical spectroscopic follow-up in a $sim 18, rm{deg^2}$ area of the equatorial XMM-XXL north field. A sample of 8445 point-like X-ray sources detected by XMM-Newton abo ve a limiting flux of $F_{rm 0.5-10, keV} > 10^{-15} rm,erg, cm^{-2}, s^{-1}$ was matched to optical (SDSS) and infrared (WISE) counterparts. We followed up 3042 sources brighter than $r=22.5$ mag with the SDSS BOSS spectrograph. The spectra yielded a reliable redshift measurement for 2578 AGN in the redshift range $z=0.02-5.0$, with $0.5-2rm, keV$ luminosities ranging from $10^{39}-10^{46}rm,erg,s^{-1}$. This is currently the largest published spectroscopic sample of X-ray selected AGN in a contiguous area. The BOSS spectra of AGN candidates show a bimodal distribution of optical line widths allowing a separation between broad- and narrow-emission line AGN. The former dominate our sample (70 per cent) due to the relatively bright X-ray flux limit and the optical BOSS magnitude limit. We classify the narrow emission line objects (22 per cent of full sample) using standard BPT diagnostics: the majority have line ratios indicating the dominant source of ionization is the AGN. A small number (8 per cent of full sample) exhibit the typical narrow line ratios of star-forming galaxies, or only have absorption lines in their spectra. We term the latter two classes elusive AGN. We also compare X-ray, optical and infrared color AGN selections in this field. X-ray observations reveal, the largest number of AGN. The overlap between the selections, which is a strong function of the imaging depth in a given band, is also remarkably small. We show using spectral stacking that a large fraction of the X-ray AGN would not be selectable via optical or IR colours due to host galaxy contamination.
X-ray extragalactic surveys are ideal laboratories for the study of the evolution and clustering of active galactic nuclei (AGN). The XXL Survey spans two fields of a combined 50 $deg^2$ observed for more than 6Ms with XMM-Newton, occupying the param eter space between deep surveys and very wide area surveys; at the same time it benefits from a wealth of ancillary data. This paper marks the first release of the XXL point source catalogue selected in the 2-10 keV energy band with limiting flux $F_{2-10keV}=4.8cdot10^{-14}rm{erg,s^{-1},cm^{-2}}$. We use both public and proprietary data sets to identify the counterparts of the X-ray point-like sources and improved upon the photometric redshift determination for AGN by applying a Random Forest classification trained to identify for each object the optimal photometric redshift model library. We also assign a probability to each source to be a star or an outlier. We model with Bayesian analysis the X-ray spectra assuming a power-law model with the presence of an absorbing medium. We find an average unabsorbed photon index of $Gamma=1.85$ and average hydrogen column density $log{N_{H}}=21.07 cm^{-2}$. We find no trend of $Gamma$ or $N_H$ with redshift and a fraction of 26% absorbed sources ($log N_{H}>22$). We show that the XXL-1000-AGN number counts extended the number counts of the COSMOS survey to higher fluxes and are fully consistent with the Euclidean expectation. We constrain the intrinsic luminosity function of AGN in the 2-10 keV energy band where the unabsorbed X-ray flux is estimated from the X-ray spectral fit up to z=3. Finally, we demonstrate the presence of a supercluster size structure at redshift 0.14, identified by means of percolation analysis of the XXL-1000-AGN sample. The XXL survey, reaching a medium flux limit and covering a wide area is a stepping stone between current deep fields and planned wide area surveys.
Context. The XMM-XXL survey uses observations from XMM-Newton to detect clusters of galaxies over a wide range in mass and redshift. The moderate PSF of XMM-Newton means that point sources within or projected onto a cluster may not be separated from the cluster emission, leading to enhanced luminosities and affecting the selection function of the cluster survey. Aims. We present the results of short Chandra observations of 21 galaxy clusters and cluster candidates at redshifts z $>$ 1 detected in the XMM-XXL survey in X-rays or selected in the optical and infra-red. Methods. With the superior angular resolution of Chandra we investigate whether there are any point sources within the cluster region that were not detected by the XMM-XXL analysis pipeline, and whether any point sources were misclassified as distant clusters. Results. Of the 14 X-ray selected clusters, nine are free from significant point source contamination, either having no previously unresolved sources detected by Chandra, or with less than about 10% of the reported XXL cluster flux being resolved into point sources. Of the other five sources, one is significantly contaminated by previously unresolved AGN, and four appear to be AGN misclassified as clusters. All but one of these cases are in the subset of less secure X-ray selected cluster detections and the false positive rate is consistent with that expected from the XXL selection function modelling. We also considered a further seven optically-selected cluster candidates associated with faint XXL sources that were not classed as clusters. By decontaminating and vetting these distant clusters, we provide a pure sample of clusters at redshift z $>$ 1 for deeper follow-up observations, and demonstrate the utility of using Chandra snapshots to test for AGN in surveys with high sensitivity but poor angular resolution.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا