ترغب بنشر مسار تعليمي؟ اضغط هنا

Ages and Age Spreads in Young Stellar Clusters

326   0   0.0 ( 0 )
 نشر من قبل Rob Jeffries
 تاريخ النشر 2017
  مجال البحث فيزياء
والبحث باللغة English
 تأليف R. D. Jeffries




اسأل ChatGPT حول البحث

I review progress towards understanding the time-scales of star and cluster formation and of the absolute ages of young stars. I focus in particular on the areas in which Francesco Palla made highly significant contributions - interpretation of the Hertzsprung-Russell diagrams of young clusters and the role of photospheric lithium as an age diagnostic.

قيم البحث

اقرأ أيضاً

It has recently been suggested that high-density clusters have stellar age distributions narrower than that of the Orion Nebula Cluster, indicating a possible trend of narrower age distributions for denser clusters. We show this effect to likely aris e from star formation being faster in gas with a higher density. We model the star formation history of molecular clumps in equilibrium by associating a star formation efficiency (SFE) per free-fall time, eff, to their volume density profile. Our model predicts a steady decline of the star formation rate (SFR), which we quantify with its half-life time, namely, the time needed for the SFR to drop to half its initial value. Given the uncertainties affecting the SFE per free-fall time, we consider two distinct values: 0.1 and 0.01. For isothermal spheres, eff=0.1 leads to a half-life time of order the clump free-fall time, tff. Therefore, the age distributions of stars formed in high-density clumps have smaller full-widths at half-maximum than those of stars formed in low-density clumps. When eff=0.01, the half-life time is 10 times longer. We explore what happens if the star formation duration is shorter than 10tff, that is, if the half-life time of the SFR cannot be defined. There, we build on the invariance of the shape of the young cluster mass function to show that an anti-correlation between clump density and star formation duration is expected. Therefore, regardless of whether the star formation duration is longer than the SFR half-life time, denser molecular clumps yield narrower star age distributions in clusters. Published densities and stellar age spreads of young clusters actually suggest that the time-scale for star formation is of order 1-4tff. We conclude that there is no need to invoke the existence of multiple cluster formation mechanisms to explain the observed range of stellar age spreads in clusters.
Recent discoveries have put the picture of stellar clusters being simple stellar populations into question. In particular, the color-magnitude diagrams of intermediate age (1-2 Gyr) massive clusters in the Large Magellanic Cloud (LMC) show features t hat could be interpreted as age spreads of 100-500 Myr. If multiple generations of stars are present in these clusters then, as a consequence, young (<1 Gyr) clusters with similar properties should have age spreads of the same order. In this paper we use archival Hubble Space Telescope (HST) data of eight young massive LMC clusters (NGC 1831, NGC 1847, NGC 1850, NGC 2004, NGC 2100, NGC 2136, NGC 2157 and NGC 2249) to test this hypothesis. We analyzed the color-magnitude diagrams of these clusters and fitted their star formation history to derive upper limits of potential age spreads. We find that none of the clusters analyzed in this work shows evidence for an extended star formation history that would be consistent with the age spreads proposed for intermediate age LMC clusters. Tests with artificial single age clusters show that the fitted age dispersion of the youngest clusters is consistent with spreads that are purely induced by photometric errors. As an additional result we determined a new age of NGC 1850 of ~100 Myr, significantly higher than the commonly used value of about 30 Myr, although consistent with early HST estimates.
The pace and pattern of star formation leading to rich young stellar clusters is quite uncertain. In this context, we analyze the spatial distribution of ages within 19 young (median t<3 Myr on the Siess et al. (2000) timescale), morphologically simp le, isolated, and relatively rich stellar clusters. Our analysis is based on young stellar object samples from the MYStIX and SFiNCs surveys, and a new estimator of pre-main sequence (PMS) stellar ages, AgeJX, derived from X-ray and near-infrared photometric data. Median cluster ages are computed within four annular subregions of the clusters. We confirm and extend the earlier result of Getman et al. (2014): 80% percent of the clusters show age trends where stars in cluster cores are younger than in outer regions. Our cluster stacking analyses establish the existence of an age gradient to high statistical significance in several ways. Time scales vary with the choice of PMS evolutionary model; the inferred median age gradient across the studied clusters ranges from 0.75 Myr/pc to 1.5 Myr/pc. The empirical finding reported in the present study -- late or continuing formation of stars in the cores of star clusters with older stars dispersed in the outer regions -- has a strong foundation with other observational studies and with the astrophysical models like the global hierarchical collapse model of Vazquez-Semadeni et al. (2017).
Most star clusters at an intermediate age (1-2 Gyr) in the Large and Small Magellanic Clouds show a puzzling feature in their color-magnitude diagrams (CMD) that is not in agreement with a simple stellar population. The main sequence turn-off of thes e clusters is much broader than would be expected from photometric uncertainties. One interpretation of this feature is that age spreads of the order 200-500 Myr exist within individual clusters, although this interpretation is highly debated. Such large age spreads should affect other parts of the CMD, which are sensitive to age, as well. In this study, we analyze the CMDs of a sample of 12 intermediate-age clusters in the Large Magellanic Cloud that all show an extended turn-off using archival optical data taken with the Hubble Space Telescope. We fit the star formation history of the turn-off region and the red clump region independently with two different theoretical isochrone models. We find that in most of the cases, the age spreads inferred from the red clumps are smaller than the ones resulting from the turn-off region. However, the age ranges resulting from the red clump region are broader than would be expected for a single age. Only two out of 12 clusters in our sample show a red clump which seems to be consistent with a single age. As our results are not unambiguous, we can not ultimately tell if the extended main sequence turn-off feature is due to an age spread, or not, by fitting the star formation histories to the red clump regions. However, we find that the width of the extended main sequence turn-off feature is correlated with the age of the clusters in a way which would be unexplained in the age spread interpretation, but which may be expected if stellar rotation is the cause of the spread at the turn-off.
137 - Paul Goudfrooij , 2017
Extended main sequence turn-off (eMSTO) regions are a common feature in color-magnitude diagrams of young and intermediate-age star clusters in the Magellanic Clouds. The nature of eMSTOs remains debated in the literature. The currently most popular scenarios are extended star formation activity and ranges of stellar rotation rates. Here we study details of differences in MSTO morphology expected from spreads in age versus spreads in rotation rates, using Monte Carlo simulations with the Geneva SYCLIST isochrone models that include the effects of stellar rotation. We confirm a recent finding of Niederhofer et al. that a distribution of stellar rotation velocities yields an MSTO extent that is proportional to the cluster age, as observed. However, we find that stellar rotation yields MSTO crosscut widths that are generally smaller than observed ones at a given age. We compare the simulations with high-quality Hubble Space Telescope data of NGC 1987 and NGC 2249, which are the two only relatively massive star clusters with an age of ~1 Gyr for which such data is available. We find that the distribution of stars across the eMSTOs of these clusters cannot be explained solely by a distribution of stellar rotation velocities, unless the orientations of rapidly rotating stars are heavily biased towards an equator-on configuration. Under the assumption of random viewing angles, stellar rotation can account for ~60% and ~40% of the observed FWHM widths of the eMSTOs of NGC 1987 and NGC 2249, respectively. In contrast, a combination of distributions of stellar rotation velocities and stellar ages fits the observed eMSTO morphologies very well.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا