ترغب بنشر مسار تعليمي؟ اضغط هنا

Interfacing MHD Single Fluid and Kinetic Exospheric Solar Wind Models and Comparing Their Energetics

159   0   0.0 ( 0 )
 نشر من قبل Sofia-Paraskevi Moschou
 تاريخ النشر 2017
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

An exospheric kinetic solar wind model is interfaced with an observation-driven single fluid magnetohydrodynamic (MHD) model. Initially, a photospheric magnetogram serves as observational input in the fluid approach to extrapolate the heliospheric magnetic field. Then semi-empirical coronal models are used for estimating the plasma characteristics up to a heliocentric distance of 0.1AU. From there on a full MHD model which computes the three-dimensional time-dependent evolution of the solar wind macroscopic variables up to the orbit of the Earth is used. After interfacing the density and velocity at the inner MHD boundary, we compare with the results of a kinetic exospheric solar wind model based on the assumption of Maxwell and Kappa velocity distribution functions for protons and electrons respectively, as well as with textit{in situ} observations at 1AU. This provides insight on more physically detailed processes, such as coronal heating and solar wind acceleration, that naturally arise by inclusion of suprathermal electrons in the model. We are interested in the profile of the solar wind speed and density at 1AU, in characterizing the slow and fast source regions of the wind and in comparing MHD with exospheric models in similar conditions. We calculate the energetics of both models from low to high heliocentric distances.



قيم البحث

اقرأ أيضاً

Solar flares are explosive events in the solar corona, representing fast conversion of magnetic energy into thermal and kinetic energy, and hence radiation, due to magnetic reconnection. Modelling is essential for understanding and predicting these e vents. However, self-consistent modelling is extremely difficult due to the vast spatial and temporal scale separation between processes involving thermal plasma (normally considered using magnetohydrodynamic (MHD) approach) and non-thermal plasma (requiring a kinetic approach). In this mini-review we consider different approaches aimed at bridging the gap between fluid and kinetic modelling of solar flares. Two types of approaches are discussed: combined MHD/test-particle (MHDTP) models, which can be used for modelling the flaring corona with relatively small numbers of energetic particles, and hybrid fluid-kinetic methods, which can be used for modelling stronger events with higher numbers of energetic particles. Two specific examples are discussed in more detail: MHDTP models of magnetic reconnection and particle acceleration in kink-unstable twisted coronal loops, and a novel reduced-kinetic model of particle transport.
99 - R. Bruno 2017
The solar wind is highly structured in fast and slow flows. These two dynamical regimes remarkably differ not only for the average values of magnetic field and plasma parameters but also for the type of fluctuations they transport. Fast wind is chara cterized by large amplitude, incompressible fluctuations, mainly Alfv{e}nic, slow wind is generally populated by smaller amplitude and less Alfv{e}nic fluctuations, mainly compressive. The typical corotating fast stream is characterized by a stream interface, a fast wind region and a slower rarefaction region formed by the trailing expansion edge of the stream. Moving {between these two regions}, from faster to slower wind, we observe the following behavior: a) the power level of magnetic fluctuations within the inertial range largely decreases, keeping the typical Kolmogorov scaling; b) at proton scales, for about one decade right beyond the high frequency break, the spectral index becomes flatter and flatter towards a value around -2.7; c) at higher frequencies, before the electron scales, the spectral index remains around -2.7 and, {based on suitable observations available for $4$ corotating streams}, the power level does not change, irrespective of the flow speed. All these spectral features, characteristic of high speed streams, suggest the existence of a sort of magnetic field background spectrum. This spectrum would be common to both faster and slower wind but, any time the observer would cross the inner part of a fluxtube channeling the faster wind into the interplanetary space, a turbulent and large amplitude Alfv{e}nic spectrum would be superposed to it.
As the solar wind propagates through the heliosphere, dynamical processes irreversibly erase the signatures of the near-Sun heating and acceleration processes. The elemental fractionation of the solar wind should not change during transit however, ma king it an ideal tracer of these processes. We aimed to verify directly if the solar wind elemental fractionation is reflective of the coronal source region fractionation, both within and across different solar wind source regions. A backmapping scheme was used to predict where solar wind measured by the Advanced Composition Explorer (ACE) originated in the corona. The coronal composition measured by the Hinode Extreme ultraviolet Imaging Spectrometer (EIS) at the source regions was then compared with the in-situ solar wind composition. On hourly timescales there was no apparent correlation between coronal and solar wind composition. In contrast, the distribution of fractionation values within individual source regions was similar in both the corona and solar wind, but distributions between different sources have significant overlap. The matching distributions directly verifies that elemental composition is conserved as the plasma travels from the corona to the solar wind, further validating it as a tracer of heating and acceleration processes. The overlap of fractionation values between sources means it is not possible to identify solar wind source regions solely by comparing solar wind and coronal composition measurements, but a comparison can be used to verify consistency with predicted spacecraft-corona connections.
Turbulent properties of the quiet Sun represent the basic state of surface conditions, and a background for various processes of solar activity. Therefore understanding of properties and dynamics of this `basic state is important for investigation of more complex phenomena, formation and development of observed phenomena in the photosphere and atmosphere. For characterization of the turbulent properties we compare kinetic energy spectra on granular and sub-granular scales obtained from infrared TiO observations with the New Solar Telescope (Big Bear Solar Observatory) and from 3D radiative MHD numerical simulations (SolarBox code). We find that the numerical simulations require a high spatial resolution with 10 - 25 km grid-step in order to reproduce the inertial (Kolmogorov) turbulence range. The observational data require an averaging procedure to remove noise and potential instrumental artifacts. The resulting kinetic energy spectra show a good agreement between the simulations and observations, opening new perspectives for detailed joint analysis of more complex turbulent phenomena on the Sun, and possibly on other stars. In addition, using the simulations and observations we investigate effects of background magnetic field, which is concentrated in self-organized complicated structures in intergranular lanes, and find an increase of the small-scale turbulence energy and its decrease at larger scales due to magnetic field effects.
Knowledge about the background solar wind plays a crucial role in the framework of space weather forecasting. In-situ measurements of the background solar wind are only available for a few points in the heliosphere where spacecraft are located, there fore we have to rely on heliospheric models to derive the distribution of solar wind parameters in interplanetary space. We test the performance of different solar wind models, namely Magnetohydrodynamic Algorithm outside a Sphere/ENLIL (MAS/ENLIL), Wang-Sheeley-Arge/ENLIL (WSA/ENLIL), and MAS/MAS, by comparing model results with in-situ measurements from spacecraft located at 1 AU distance to the Sun (ACE, Wind). To exclude the influence of interplanetary coronal mass ejections (ICMEs), we chose the year 2007 as a time period with low solar activity for our comparison. We found that the general structure of the background solar wind is well reproduced by all models. The best model results were obtained for the parameter solar wind speed. However, the predicted arrival times of high-speed solar wind streams have typical uncertainties of the order of about one day. Comparison of model runs with synoptic magnetic maps from different observatories revealed that the choice of the synoptic map significantly affects the model performance.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا