ﻻ يوجد ملخص باللغة العربية
In this work, we develop a generalization of Hennessy-Milner Logic (HML) for Generalized Synchronization Trees (GSTs) that we call Generalized Hennessy Milner Logic (GHML). Importantly, this logic suggests a strong relationship between (weak) bisimulation for GSTs and ordinary bisimulation for Synchronization Trees (STs). We demonstrate that this relationship can be used to define the GST analog for image-finiteness of STs. Furthermore, we demonstrate that certain maximal Hennessy-Milner classes of STs have counterparts in maximal Hennessy-Milner classes of GSTs with respect to GST weak bisimulation. We also exhibit some interesting characteristics of these maximal Hennessy-Milner classes of GSTs.
With the previous notions of bisimulation presented in literature, to check if two quantum processes are bisimilar, we have to instantiate the free quantum variables of them with arbitrary quantum states, and verify the bisimilarity of resultant conf
Quantum processes describe concurrent communicating systems that may involve quantum information. We propose a notion of open bisimulation for quantum processes and show that it provides both a sound and complete proof methodology for a natural exten
This paper shows an application of Bloom and Esiks iteration algebras to model graph data in a graph database query language. About twenty years ago, Buneman et al. developed a graph database query language UnQL on the top of a functional meta-langua
In chemical reaction networks (CRNs) with stochastic semantics based on continuous-time Markov chains (CTMCs), the typically large populations of species cause combinatorially large state spaces. This makes the analysis very difficult in practice and
Most fairness assumptions used for verifying liveness properties are criticised for being too strong or unrealistic. On the other hand, justness, arguably the minimal fairness assumption required for the verification of liveness properties, is not pr