ﻻ يوجد ملخص باللغة العربية
Motivated by applications in model-free finance and quantitative risk management, we consider Frechet classes of multivariate distribution functions where additional information on the joint distribution is assumed, while uncertainty in the marginals is also possible. We derive optimal transport duality results for these Frechet classes that extend previous results in the related literature. These proofs are based on representation results for increasing convex functionals and the explicit computation of the conjugates. We show that the dual transport problem admits an explicit solution for the function $f=1_B$, where $B$ is a rectangular subset of $mathbb R^d$, and provide an intuitive geometric interpretation of this result. The improved Frechet--Hoeffding bounds provide ad-hoc upper bounds for these Frechet classes. We show that the improved Frechet--Hoeffding bounds are pointwise sharp for these classes in the presence of uncertainty in the marginals, while a counterexample yields that they are not pointwise sharp in the absence of uncertainty in the marginals, even in dimension 2. The latter result sheds new light on the improved Frechet--Hoeffding bounds, since Tankov [30] has showed that, under certain conditions, these bounds are sharp in dimension 2.
We study the problem of bounding path-dependent expectations (within any finite time horizon $d$) over the class of discrete-time martingales whose marginal distributions lie within a prescribed tolerance of a given collection of benchmark marginal d
This paper is devoted to obtaining a wellposedness result for multidimensional BSDEs with possibly unbounded random time horizon and driven by a general martingale in a filtration only assumed to satisfy the usual hypotheses, i.e. the filtration may
A probabilistic method for solving the Monge-Kantorovich mass transport problem on $R^d$ is introduced. A system of empirical measures of independent particles is built in such a way that it obeys a doubly indexed large deviation principle with an op
In this article we study and classify optimal martingales in the dual formulation of optimal stopping problems. In this respect we distinguish between weakly optimal and surely optimal martingales. It is shown that the family of weakly optimal and su
This paper addresses the joint calibration problem of SPX options and VIX options or futures. We show that the problem can be formulated as a semimartingale optimal transport problem under a finite number of discrete constraints, in the spirit of [ar