ﻻ يوجد ملخص باللغة العربية
Nd0.05Ce0.95CoIn5 features a magnetic field-driven quantum phase transition that separates two antiferromagnetic phases with an identical magnetic structure inside the superconducting condensate. Using neutron diffraction we demonstrate that the population of the two magnetic domains in the two phases is affected differently by the rotation of the magnetic field in the tetragonal basal plane. In the low-field SDW-phase the domain population is only weakly affected while in the high-field Q-phase they undergo a sharp switch for fields around the a-axis. Our results provide evidence that the anisotropic spin susceptibility in both phases arises ultimately from spin-orbit interactions but are qualitatively different in the two phases. This provides evidence that the electronic structure is changed at the quantum phase transition, which yields a modified coupling between magnetism and superconductivity in the Q-phase.
The vortex lattice (VL) in the mixed state of the stannide superconductor Yb$_{3}$Rh$_{4}$Sn$_{13}$ has been studied using small-angle neutron scattering (SANS). The field dependencies of the normalized longitudinal and transverse correlation lengths
Utilizing Corbino disc structures, we have examined the magnetic field response of resistivity for the surface states of SmB6 on different crystalline surfaces at low temperatures. Our results reveal a hysteretic behavior whose magnitude depends on t
We study the Kitaev-Heisenberg-$Gamma$-$Gamma$ model that describes the magnetism in strong spin-orbit coupled honeycomb lattice Mott insulators. In strong $[111]$ magnetic fields that bring the system into the fully polarized paramagnetic phase, we
The valence state of Yb ions in beta-YbAlB4 and its polymorph alpha-YbAlB4 has been investigated by using X-ray absorption and emission spectroscopy in SPring-8 at temperatures from 2 to 280 K. The observed Yb valence is 2.78 +- 0.01 in beta-YbAlB4 a
We report an unexpected magnetic-field-driven magnetic structure in the 5f-electron Shastry- Sutherland system U2Pd2In. This phase develops at low temperatures from a noncollinear antiferromagnetic ground state above the critical field of 25.8 T appl