ﻻ يوجد ملخص باللغة العربية
We prove that if T is a theory of large, bounded, fields of characteristic zero, with almost quantifier elimination, and T_D is the model companion of T + D is a derivation, then for any model U of T_D, and differential subfield K of U whose field of constants is a model of T, and linear differential equation DY = AY over K, there is a Picard-Vessiot extension L of K for the equation which is embedded in U over K Likewise for logarithmic differential equations over K on connected algebraic groups over the constants of K and the corresponding strongly normal extensions of K.
We compute the Picard group of the moduli stack of elliptic curves and its canonical compactification over general base schemes.
We describe the maximal torus and maximal unipotent subgroup of the Picard variety of a proper scheme over a perfect field.
We classify various types of graded extensions of a finite braided tensor category $cal B$ in terms of its $2$-categorical Picard groups. In particular, we prove that braided extensions of $cal B$ by a finite group $A$ correspond to braided monoidal
We introduce the notion of central extension of gerbes on a topological space. We then show that there are obstruction classes to lifting objects and isomorphisms in a central extension. We also discuss pronilpotent gerbes. These results are used in
The main result of the paper is a flat extension theorem for positive linear functionals on *-algebras. The theorem is applied to truncated moment problems on cylinder sets, on matrices of polynomials and on enveloping algebras of Lie algebras.