ﻻ يوجد ملخص باللغة العربية
The control of solute fluxes through either microscopic phoresis or hydrodynamic advection is a fundamental way to transport molecules, which are ubiquitously present in nature and technology. We study the transport of large solute such as DNA driven by a time-dependent thermal field in a polymer solution. Heat propagation of a single heat spot moving back and forth gives rise to the molecular focusing of DNA with frequency-tunable control. We developed a theoretical model, where heat conduction, viscoelastic expansion of walls, and the viscosity gradient of a smaller solute are coupled, and that can explain the underlying hydrodynamic focusing and its interplay with phoretic transports. This cross effect may allow one to design a unique miniaturized pump in microfluidics.
This article explores the governing role of the internal hydrodynamics and advective transport within sessile colloidal droplets on the self assembly of nanostructures to form floral patterns. Water acetone binary fluid and Bi2O3 nanoflakes based com
Despite decades of research, the modeling of moving contact lines has remained a formidable challenge in fluid dynamics whose resolution will impact numerous industrial, biological, and daily life applications. On the one hand, molecular dynamics (MD
Using high-speed photography, we investigate two distinct regimes of the impact dynamics of granular jets with non-circular cross-sections. In the steady-state regime, we observe the formation of thin granular sheets with anisotropic shapes and show
We report measurements of resonant thermal capillary oscillations of a hemispherical liquid gas interface obtained using a half bubble deposited on a solid substrate. The thermal motion of the hemispherical interface is investigated using an atomic f
Thermal wall is a convenient idealization of a rapidly vibrating plate used for vibrofluidization of granular materials. The objective of this work is to incorporate the Knudsen temperature jump at thermal wall in the Navier-Stokes hydrodynamic model