ﻻ يوجد ملخص باللغة العربية
A key unresolved question is the role that galaxy mergers play in driving stellar mass growth over cosmic time. Recent observational work hints at the possibility that the overall contribution of `major mergers (mass ratios $gtrsim$1:4) to cosmic stellar mass growth may be small, because they enhance star formation rates by relatively small amounts at high redshift, when much of todays stellar mass was assembled. However, the heterogeneity and relatively small size of todays datasets, coupled with the difficulty in identifying genuine mergers, makes it challenging to $textit{empirically}$ quantify the merger contribution to stellar mass growth. Here, we use Horizon-AGN, a cosmological hydrodynamical simulation, to comprehensively quantify the contribution of mergers to the star formation budget over the lifetime of the Universe. We show that: (1) both major and minor mergers enhance star formation to similar amounts, (2) the fraction of star formation directly attributable to merging is small at all redshifts (e.g. $sim$35 and $sim$20 per cent at z$sim$3 and z$sim$1 respectively) and (3) only $sim$25 per cent of todays stellar mass is directly attributable to galaxy mergers over cosmic time. Our results suggest that smooth accretion, not merging, is the dominant driver of stellar mass growth over the lifetime of the Universe.
Understanding the processes that trigger morphological transformation is central to understanding how and why the Universe transitions from being disc-dominated at early epochs to having the morphological mix that is observed today. We use Horizon-AG
Dwarf galaxies (M*<10^9 Msun) are key drivers of mass assembly in high mass galaxies, but relatively little is understood about the assembly of dwarf galaxies themselves. Using the textsc{NewHorizon} cosmological simulation (40 pc spatial resolution)
We use a semi-analytic galaxy formation model to study the co-evolution of supermassive black holes (SMBHs) with their host galaxies. Although the coalescence of SMBHs is not important, the quasar-mode accretion induced by mergers plays a dominant ro
We use a highly complete subset of the GAMA-II redshift sample to fully describe the stellar mass dependence of close-pairs and mergers between 10^8 Msun and 10^12 Msun. Using the analytic form of this fit we investigate the total stellar mass accret
We present hydrodynamic simulations of a major merger of disk galaxies, and study the ISM dynamics and star formation properties. High spatial and mass resolutions of 12pc and 4x10^4 M_sol allow to resolve cold and turbulent gas clouds embedded in a