ترغب بنشر مسار تعليمي؟ اضغط هنا

The limited role of galaxy mergers in driving stellar mass growth over cosmic time

60   0   0.0 ( 0 )
 نشر من قبل Garreth Martin
 تاريخ النشر 2017
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

A key unresolved question is the role that galaxy mergers play in driving stellar mass growth over cosmic time. Recent observational work hints at the possibility that the overall contribution of `major mergers (mass ratios $gtrsim$1:4) to cosmic stellar mass growth may be small, because they enhance star formation rates by relatively small amounts at high redshift, when much of todays stellar mass was assembled. However, the heterogeneity and relatively small size of todays datasets, coupled with the difficulty in identifying genuine mergers, makes it challenging to $textit{empirically}$ quantify the merger contribution to stellar mass growth. Here, we use Horizon-AGN, a cosmological hydrodynamical simulation, to comprehensively quantify the contribution of mergers to the star formation budget over the lifetime of the Universe. We show that: (1) both major and minor mergers enhance star formation to similar amounts, (2) the fraction of star formation directly attributable to merging is small at all redshifts (e.g. $sim$35 and $sim$20 per cent at z$sim$3 and z$sim$1 respectively) and (3) only $sim$25 per cent of todays stellar mass is directly attributable to galaxy mergers over cosmic time. Our results suggest that smooth accretion, not merging, is the dominant driver of stellar mass growth over the lifetime of the Universe.



قيم البحث

اقرأ أيضاً

Understanding the processes that trigger morphological transformation is central to understanding how and why the Universe transitions from being disc-dominated at early epochs to having the morphological mix that is observed today. We use Horizon-AG N, a cosmological hydrodynamical simulation, to perform a comprehensive study of the processes that drive morphological change in massive (M > 10^10 MSun) galaxies over cosmic time. We show that (1) essentially all the morphological evolution in galaxies that are spheroids at z=0 is driven by mergers with mass ratios greater than 1:10, (2) major mergers alone cannot produce todays spheroid population -- minor mergers are responsible for a third of all morphological transformation over cosmic time and are its dominant driver after z~1, (3) prograde mergers trigger milder morphological transformation than retrograde mergers -- while both types of events produce similar morphological changes at z>2, the average change due to retrograde mergers is around twice that due to their prograde counterparts at z~0, (4) remnant morphology depends strongly on the gas fraction of a merger, with gas-rich mergers routinely re-growing discs, and (5) at a given stellar mass, discs do not exhibit drastically different merger histories from spheroids -- disc survival in mergers is driven by acquisition of cold gas (via cosmological accretion and gas-rich interactions) and a preponderance of prograde mergers in their merger histories.
247 - G. Martin 2020
Dwarf galaxies (M*<10^9 Msun) are key drivers of mass assembly in high mass galaxies, but relatively little is understood about the assembly of dwarf galaxies themselves. Using the textsc{NewHorizon} cosmological simulation (40 pc spatial resolution) , we investigate how mergers and fly-bys drive the mass assembly and structural evolution of around 1000 field and group dwarfs up to z=0.5. We find that, while dwarf galaxies often exhibit disturbed morphologies (5 and 20 per cent are disturbed at z=1 and z=3 respectively), only a small proportion of the morphological disturbances seen in dwarf galaxies are driven by mergers at any redshift (for 10^9 Msun, mergers drive only 20 per cent morphological disturbances). They are instead primarily the result of interactions that do not end in a merger (e.g. fly-bys). Given the large fraction of apparently morphologically disturbed dwarf galaxies which are not, in fact, merging, this finding is particularly important to future studies identifying dwarf mergers and post-mergers morphologically at intermediate and high redshifts. Dwarfs typically undergo one major and one minor merger between z=5 and z=0.5, accounting for 10 per cent of their total stellar mass. Mergers can also drive moderate star formation enhancements at lower redshifts (3 or 4 times at z=1), but this accounts for only a few per cent of stellar mass in the dwarf regime given their infrequency. Non-merger interactions drive significantly smaller star formation enhancements (around two times), but their preponderance relative to mergers means they account for around 10 per cent of stellar mass formed in the dwarf regime.
370 - TianChi Zhang , Qi Guo , Yan Qu 2021
We use a semi-analytic galaxy formation model to study the co-evolution of supermassive black holes (SMBHs) with their host galaxies. Although the coalescence of SMBHs is not important, the quasar-mode accretion induced by mergers plays a dominant ro le in the growth of SMBHs. Mergers play a more important role in the growth of SMBH host galaxies than in the SMBH growth. It is the combined contribution from quasar mode accretion and mergers to the SMBH growth and the combined contribution from starburst and mergers to their host galaxy growth that determine the observed scaling relation between the SMBH masses and their host galaxy masses. We also find that mergers are more important in the growth of SMBH host galaxies compared to normal galaxies which share the same stellar mass range as the SMBH host galaxies.
We use a highly complete subset of the GAMA-II redshift sample to fully describe the stellar mass dependence of close-pairs and mergers between 10^8 Msun and 10^12 Msun. Using the analytic form of this fit we investigate the total stellar mass accret ing onto more massive galaxies across all mass ratios. Depending on how conservatively we select our robust merging systems, the fraction of mass merging onto more massive companions is 2.0%-5.6%. Using the GAMA-II data we see no significant evidence for a change in the close-pair fraction between redshift $z = 0.05-0.2$. However, we find a systematically higher fraction of galaxies in similar mass close-pairs compared to published results over a similar redshift baseline. Using a compendium of data and the function $gamma_M =A(1+z)m$ to predict the major close-pair fraction, we find fitting parameters of $A = 0.021 pm 0.001$ and $m = 1.53 pm 0.08$, which represents a higher low-redshift normalisation and shallower power-law slope than recent literature values. We find that the relative importance of in-situ star-formation versus galaxy merging is inversely correlated, with star-formation dominating the addition of stellar material below Mstar and merger accretion events dominating beyond Mstar. We find mergers have a measurable impact on the whole extent of the GSMF, manifest as a deepening of the dip in the GSMF over the next Gyr and an increase in Mstar by as much as 0.01-0.05 dex.
We present hydrodynamic simulations of a major merger of disk galaxies, and study the ISM dynamics and star formation properties. High spatial and mass resolutions of 12pc and 4x10^4 M_sol allow to resolve cold and turbulent gas clouds embedded in a warmer diffuse phase. We compare to lower resolution models, where the multiphase ISM is not resolved and is modeled as a relatively homogeneous and stable medium. While merger-driven bursts of star formation are generally attributed to large-scale gas inflows towards the nuclear regions, we show that once a realistic ISM is resolved, the dominant process is actually gas fragmentation into massive and dense clouds and rapid star formation therein. As a consequence, star formation is more efficient by a factor of up to 10 and is also somewhat more extended, while the gas density probability distribution function (PDF) rapidly evolves towards very high densities. We thus propose that the actual mechanism of starburst triggering in galaxy collisions can only be captured at high spatial resolution and when the cooling of gas is modeled down to less than 10^3 K. Not only does our model reproduce the properties of the Antennae system, but it also explains the ``starburst mode revealed recently in high-redshift mergers compared to quiescent disks.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا