ﻻ يوجد ملخص باللغة العربية
Stripe domains or any other type domain structures with part of their magnetic moments deviating from the film plane, which usually occur above a certain film thickness, are known problems that limit their potential applications for soft magnetic thin films (SMTFs). In this work, we report the growth of micrometer thick c-axis oriented hcp-Co84Ir16 SMTFs with their magnetic moments restricted strictly in plane by negative magnetocrystalline anisotropy. Extensive characterizations have been performed on these films, which show that they exhibit very good soft magnetic properties even for our micrometer thick films. Moreover, the anisotropy properties and high-frequency properties were thoroughly investigated and our results show very promising properties of these SMTFs for future applications.
We demonstrate that chiral skyrmionic magnetization configurations can be found as the minimum energy state in B20 thin film materials with easy-plane magnetocrystalline anisotropy with an applied magnetic field perpendicular to the film plane. Our o
We report on the investigation of coercivity changes of the Co$_{72}$Pt$_{28}$/Co$_{81}$Ir$_{19}$ exchange-coupled composite (ECC) media with negative soft-layer (SL) magnetocrystalline anisotropy (MA) . Our results show that the hard-layer (HL) of o
Tilted off-plane magnetic anisotropy induces two unusual characteristic magnetotransport phenomena: extraordinary Hall effect in the presence of an in-plane magnetic field, and non-monotonic anisotropic magnetoresistance in the presence of a field no
Searching for new methods controlling antiferromagnetic (AFM) domain wall is one of the most important issues for AFM spintronic device operation. In this work, we study theoretically the domain wall motion of an AFM nanowire, driven by the axial ani
The magnetic moments of the negative parity, spin-1/2 baryons containing single heavy quark are calculated. The pollution that occur from the transitions between positive and negative parity baryons are removed by constructing the sum rules from different Lorentz structures.