ﻻ يوجد ملخص باللغة العربية
The theory of $q$-analogs frequently occurs in a number of areas, including the fractals and dynamical systems. The $q$-derivatives and $q$-integrals play a prominent role in the study of $q$-deformed quantum mechanical simple harmonic oscillator. In this paper, we define a symmetric $q$-derivative operator and study new family of univalent functions defined by use of that operator. We establish some new relations between functions satisfying analytic conditions related to conical sections.
In this paper, two new subclasses of bi-univalent functions related to conic domains are defined by making use of symmetric $q$-differential operator. The initial bounds for Fekete-Szego inequality for the functions $f$ in these classes are estimated.
In this paper we introduce and study two new subclasses Sigma_{lambdamu mp}(alpha,beta)$ and $Sigma^{+}_{lambdamu mp}(alpha,beta)$ of meromorphically multivalent functions which are defined by means of a new differential operator. Some results connec
Harmonic functions are natural generalizations of conformal mappings. In recent years, a lot of work have been done by some researchers who focus on harmonic starlike functions. In this paper, we aim to introduce two classes of harmonic univalent fun
In the present paper the new multiplier transformations $mathrm{{mathcal{J}% }}_{p}^{delta }(lambda ,mu ,l)$ $(delta ,lgeq 0,;lambda geq mu geq 0;;pin mathrm{% }%mathbb{N} )}$ of multivalent functions is defined. Making use of the operator $mathrm{%
In this paper, we introduce and investigate a novel class of analytic and univalent functions of negative coefficients in the open unit disk. For this function class, we obtain characterization and distortion theorems as well as the radii of close-to