ﻻ يوجد ملخص باللغة العربية
NGC 2359 is an HII region located in the outer Galaxy that contains the isolated Wolf-Rayet (WR) star HD 56925. We present millimeter/submillimeter observations of $^{12}$CO($J$ = 1-0, 3-2) line emission toward the entire nebula. We identified that there are three molecular clouds at VLSR $sim$37, $sim$54, and $sim$67 km s$^{-1}$, and three HI clouds: two of them are at VLSR $sim$54 km s$^{-1}$ and the other is at $sim$63 km s$^{-1}$. These clouds except for the CO cloud at 67 km s$^{-1}$ are limb-brightened in the radio continuum, suggesting part of each cloud has been ionized. We newly found an expanding gas motion of CO/HI, whose center and expansion velocities are $sim$51 and $sim$4.5 km s$^{-1}$, respectively. This is consistent with large line widths of the CO and HI clouds at 54 km s$^{-1}$. The kinematic temperature of CO clouds at 37 and 54 km s$^{-1}$ are derived to be 17 and 61 K, respectively, whereas that of the CO cloud at 67 km s$^{-1}$ is only 6 K, indicating that the former two clouds have been heated by strong UV radiation. We concluded that the 37 and 54 km s$^{-1}$ CO clouds and three HI clouds are associated with NGC 2359, even if these clouds have different velocities. Although the velocity difference including the expanding motion are typical signatures of the stellar feedback from the exciting star, our analysis revealed that the observed large momentum for the 37 km s$^{-1}$ CO cloud cannot be explained only by the total wind momentum of the WR star and its progenitor. We therefore propose an alternative scenario that the isolated high-mass progenitor of HD 56925 was formed by a collision between the CO clouds at 37 and 54 km s$^{-1}$. If we apply the collision scenario, NGC 2359 corresponds to the final phase of the cloud-cloud collision.
We performed new comprehensive $^{13}$CO($J$=2--1) observations toward NGC 2024, the most active star forming region in Orion B, with an angular resolution of $sim$100 obtained with NANTEN2. We found that the associated cloud consists of two independ
We present new large field observations of molecular clouds with NANTEN2 toward the super star cluster NGC3603 in the transitions 12CO(J=2-1, J=1-0) and 13CO(J=2-1, J=1-0). We suggest that two molecular clouds at 13 km s-1 and 28 km s-1 are associate
A collision between two molecular clouds is one possible candidate for high-mass star formation. The HII region RCW 36, located in the Vela molecular ridge, contains a young star cluster with two O-type stars. We present new CO observations of RCW 36
We analyzed the NANTEN2 13CO (J=2-1 and 1-0) datasets in NGC 2024. We found that the cloud consists of two velocity components, whereas the cloud shows mostly single-peaked CO profiles. The two components are physically connected to the HII region as
We report the first evidence for high-mass star formation triggered by collisions of molecular clouds in M33. Using the Atacama Large Millimeter/submillimeter Array, we spatially resolved filamentary structures of giant molecular cloud 37 in M33 usin