ترغب بنشر مسار تعليمي؟ اضغط هنا

Orthogonal representations of Steiner triple system incidence graphs

83   0   0.0 ( 0 )
 نشر من قبل Louis Deaett
 تاريخ النشر 2017
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

The Heawood graph is the point-block incidence graph of the Fano plane (the unique Steiner triple system of order 7). We show that the minimum semidefinite rank of this graph is 10. That is, 10 is the smallest number of complex dimensions in which this graph has a faithful orthogonal representation, i.e., an assignment of a vector to each vertex such that the edges occur between precisely those vertices given non-orthogonal pairs. Some of our techniques extend to the incidence graphs of Steiner triple systems of larger order, and we include some observations and questions about the more general case.



قيم البحث

اقرأ أيضاً

Let $X$ be a $v$-set, $B$ a set of 3-subsets (triples) of $X$, and $B^+cupB^-$ a partition of $B$ with $|B^-|=s$. The pair $(X,B)$ is called a simple signed Steiner triple system, denoted by ST$(v,s)$, if the number of occurrences of every 2-subset o f $X$ in triples $BinB^+$ is one more than the number of occurrences in triples $BinB^-$. In this paper we prove that $st(v,s)$ exists if and only if $vequiv1,3pmod6$, $v e7$, and $sin{0,1,...,s_v-6,s_v-4,s_v}$, where $s_v=v(v-1)(v-3)/12$ and for $v=7$, $sin{0,2,3,5,6,8,14}$.
For a connected graph $G:=(V,E)$, the Steiner distance $d_G(X)$ among a set of vertices $X$ is the minimum size among all the connected subgraphs of $G$ whose vertex set contains $X$. The $k-$Steiner distance matrix $D_k(G)$ of $G$ is a matrix whose rows and columns are indexed by $k-$subsets of $V$. For $k$-subsets $X_1$ and $X_2$, the $(X_1,X_2)-$entry of $D_k(G)$ is $d_G(X_1 cup X_2)$. In this paper, we show that the rank of $2-$Steiner distance matrix of a caterpillar graph on $N$ vertices and with $p$ pendant veritices is $2N-p-1$.
The $p$-rank of a Steiner triple system $B$ is the dimension of the linear span of the set of characteristic vectors of blocks of $B$, over GF$(p)$. We derive a formula for the number of different Steiner triple systems of order $v$ and given $2$-ran k $r_2$, $r_2<v$, and a formula for the number of Steiner triple systems of order $v$ and given $3$-rank $r_3$, $r_3<v-1$. Also, we prove that there are no Steiner triple systems of $2$-rank smaller than $v$ and, at the same time, $3$-rank smaller than $v-1$. Our results extend previous work on enumerating Steiner triple systems according to the rank of their codes, mainly by Tonchev, V.A.Zinoviev and D.V.Zinoviev for the binary case and by Jungnickel and Tonchev for the ternary case.
In a recent work, Jungnickel, Magliveras, Tonchev, and Wassermann derived an overexponential lower bound on the number of nonisomorphic resolvable Steiner triple systems (STS) of order $v$, where $v=3^k$, and $3$-rank $v-k$. We develop an approach to generalize this bound and estimate the number of isomorphism classes of STS$(v)$ of rank $v-k-1$ for an arbitrary $v$ of form $3^kT$.
Conventionally, pairwise relationships between nodes are considered to be the fundamental building blocks of complex networks. However, over the last decade the overabundance of certain sub-network patterns, so called motifs, has attracted high atten tion. It has been hypothesized, these motifs, instead of links, serve as the building blocks of network structures. Although the relation between a networks topology and the general properties of the system, such as its function, its robustness against perturbations, or its efficiency in spreading information is the central theme of network science, there is still a lack of sound generative models needed for testing the functional role of subgraph motifs. Our work aims to overcome this limitation. We employ the framework of exponential random graphs (ERGMs) to define novel models based on triadic substructures. The fact that only a small portion of triads can actually be set independently poses a challenge for the formulation of such models. To overcome this obstacle we use Steiner Triple Systems (STS). These are partitions of sets of nodes into pair-disjoint triads, which thus can be specified independently. Combining the concepts of ERGMs and STS, we suggest novel generative models capable of generating ensembles of networks with non-trivial triadic Z-score profiles. Further, we discover inevitable correlations between the abundance of triad patterns, which occur solely for statistical reasons and need to be taken into account when discussing the functional implications of motif statistics. Moreover, we calculate the degree distributions of our triadic random graphs analytically.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا