ﻻ يوجد ملخص باللغة العربية
In this study we investigate jet interaction at a microscopic level in a cosmological environment, which responds to a key open question in the study of relativistic jets. Using small simulation systems during prior research, we initially studied the evolution of both electron-proton and electron-positron relativistic jets containing helical magnetic fields, by focusing on their interactions with an ambient plasma. Here, using larger jet radii, we have performed simulations of global jets containing helical magnetic fields in order to examine how helical magnetic fields affect kinetic instabilities such as the Weibel instability, the kinetic Kelvin-Helmholtz instability (kKHI) and the Mushroom instability (MI). We found that the evolution of global jets strongly depends on the size of the jet radius. For example, phase bunching of jet electrons, in particular in the electron-proton jet, is mixed with larger jet radius due to the more complicated structures of magnetic fields with excited kinetic instabilities. In our simulation study these kinetic instabilities lead to new types of instabilities in global jets. In the electron-proton jet simulation a modified recollimation occurs and jet electrons are strongly perturbed. In the electron-positron jet simulation mixed kinetic instabilities occur at early times followed by a turbulence-like structure. Simulations using much larger (and longer) systems are further required in order to thoroughly investigate the evolution of global jets containing helical magnetic fields.
In the study of relativistic jets one of the key open questions is their interaction with the environment on the microscopic level. Here, we study the initial evolution of both electron$-$proton ($e^{-}-p^{+}$) and electron$-$positron ($e^{pm}$) rela
We study the interaction of relativistic jets with their environment, using 3-dimensional relativistic particle-in-cell simulations for two cases of jet composition: (i) electron-proton ($e^{-}-p^{+}$) and (ii) electron-positron ($e^{pm}$) plasmas co
Using our new 3-D relativistic electromagnetic particle (REMP) code parallelized with MPI, we have investigated long-term particle acceleration associated with an relativistic electron-positron jet propagating in an unmagnetized ambient electron-posi
One of the key questions in the study of relativistic jets is how magnetic reconnection occurs and whether it can effectively accelerate electrons in the jet. We performed 3D particle-in-cell (PIC) simulations of a relativistic electron-proton jet of
Using the relativistic MHD code MPI-AMRVAC and a radiative transfer code in post-processing, we explore the influence of the magnetic-field configuration and transverse stratification of an over-pressured jet on its morphology, on the moving shock dy