ﻻ يوجد ملخص باللغة العربية
We introduce the combinatorial Lyubeznik resolution of monomial ideals. We prove that this resolution is isomorphic to the usual Lyubezbnik resolution. As an application, we give a combinatorial method to determine if an ideal is a Lyubeznik ideal. Furthermore, the minimality of the Lyubeznik resolution is characterized and we classify all the Lyubeznik symbols using combinatorial criteria. We get a combinatorial expression for the projective dimension, the length of Lyubeznik, and the arithmetical rank of a monomial ideal. We define the Lyubeznik totally ideals as those ideals that yield a minimal free resolution under any total order. Finally, we present that for a family of graphics, that their edge ideals are Lyubeznik totally ideals.
Independent sets play a key role into the study of graphs and important problems arising in graph theory reduce to them. We define the monomial ideal of independent sets associated to a finite simple graph and describe its homological and algebraic i
In this thesis we are interested in describing some homological invariants of certain classes of monomial ideals. We will pay attention to the squarefree and non-squarefree lexsegment ideals.
In this paper we develop a new technique to compute the Betti table of a monomial ideal. We present a prototype implementation of the resulting algorithm and we perform numerical experiments suggesting a very promising efficiency. On the way of descr
Let $G$ be a simple graph and $I(G)$ be its edge ideal. In this article, we study the Castelnuovo-Mumford regularity of symbolic powers of edge ideals of join of graphs. As a consequence, we prove Minhs conjecture for wheel graphs, complete multipart
Let C be a uniform clutter, i.e., all the edges of C have the same size, and let A be the incidence matrix of C. We denote the column vectors of A by v1,...,vq. The vertex covering number of C, denoted by g, is the smallest number of vertices in any