ﻻ يوجد ملخص باللغة العربية
Photonic data routing in optical networks overcomes the limitations of electronic routers with respect to data rate, latency, and energy consumption while suffering from dynamic power consumption, non-simultaneous usage of multiple wavelength channels, and large footprints. Here we show the first hybrid photonic-plasmonic, non-blocking, broadband 5x5 router. The compact footprint (<250 {mu}m2) enables high operation speed (480 GHz) requiring only 82 fJ/bit (1.9 dB) of averaged energy consumption (routing loss). The router supports multi-wavelength up to 206 nm in the telecom band. Having a data-capacity of >70 Tbps, thus demonstrating key features required by future high data-throughput optical networks.
Photonic crystal-based biosensors hold great promise as valid and low-cost devices for real-time monitoring of a variety of biotargets. Given the high processability and easiness of read-out even for unskilled operators, these systems can be highly a
We demonstrate an ultra-compact waveguide taper in Silicon Nitride platform. The proposed taper provides a coupling-efficiency of 95% at a length of 19.5 um in comparison to the standard linear taper of length 50 um that connects a 10 um wide wavegui
We develop a thermally tunable hybrid photonic platform comprising gallium arsenide (GaAs) photonic crystal cavities, silicon nitride (SiN$_x$) grating couplers and waveguides, and chromium (Cr) microheaters on an integrated photonic chip. The GaAs p
Metamaterials have recently established a new paradigm for enhanced light absorption in state-of-the-art photodetectors. Here, we demonstrate broadband, highly efficient, polarization-insensitive, and gate-tunable photodetection at room temperature i
Electronic skin, a class of wearable electronic sensors that mimic the functionalities of human skin, has made remarkable success in applications including health monitoring, human-machine interaction and electronic-biological interfaces. While elect