ﻻ يوجد ملخص باللغة العربية
We have fabricated disordered superconducting nanowires of molybdenium silicide. A molybdenium nanowire is first deposited on top of silicon, and the alloy is formed by rapid thermal annealing. The method allows tuning of the crystal growth to optimise, e.g., the resistivity of the alloy for potential applications in quantum phase slip devices and superconducting nanowire single-photon detectors. The wires have effective diameters from 42 to 79 nm, enabling the observation of crossover from conventional superconductivity to regimes affected by thermal and quantum fluctuations. In the smallest diameter wire and at temperatures well below the superconducting critical temperature, we observe residual resistance and negative magnetoresistance, which can be considered as fingerprints of quantum phase slips.
Vortex dynamics in superconductors have received a great deal of attention from both fundamental and applied researchers over the past few decades. Because of its critical role in the energy relaxation process of type-II superconductors, vortex dynam
We use a scanning nanometer-scale superconducting quantum interference device (SQUID) to image individual vortices in amorphous superconducting MoSi thin films. Spatially resolved measurements of the magnetic field generated by both vortices and Meis
We have measured the resistance vs. temperature of more than 20 superconducting nanowires with nominal widths ranging from 10 to 22 nm and lengths from 100 nm to 1050 nm. With decreasing cross-sectional areas, the wires display increasingly broad res
We analyze the effect of different types of fluctuations in internal electron energy on the rates of dark and photon counts in straight current-carrying superconducting nanowires. Dark counts appear due to thermal fluctuations in statistically indepe
When a ferromagnet is placed in contact with a superconductor, owing to incompatible spin order, the Cooper pairs from the superconductor cannot survive more than one or two nanometers inside the ferromagnet. This is confirmed in the measurements of