ﻻ يوجد ملخص باللغة العربية
In this paper, we report progress on answering the open problem presented by Pagh~[14], who considered the nearest neighbor search without false negatives for the Hamming distance. We show new data structures for solving the $c$-approximate nearest neighbors problem without false negatives for Euclidean high dimensional space $mathcal{R}^d$. These data structures work for any $c = omega(sqrt{log{log{n}}})$, where $n$ is the number of points in the input set, with poly-logarithmic query time and polynomial preprocessing time. This improves over the known algorithms, which require $c$ to be $Omega(sqrt{d})$. This improvement is obtained by applying a sequence of reductions, which are interesting on their own. First, we reduce the problem to $d$ instances of dimension logarithmic in $n$. Next, these instances are reduced to a number of $c$-approximate nearest neighbor search instances in $big(mathbb{R}^kbig)^L$ space equipped with metric $m(x,y) = max_{1 le i le L}(lVert x_i - y_irVert_2)$.
Persistence diagrams are important tools in the field of topological data analysis that describe the presence and magnitude of features in a filtered topological space. However, current approaches for comparing a persistence diagram to a set of other
The celebrated Monte Carlo method estimates an expensive-to-compute quantity by random sampling. Bandit-based Monte Carlo optimization is a general technique for computing the minimum of many such expensive-to-compute quantities by adaptive random sa
In the $(1+varepsilon,r)$-approximate near-neighbor problem for curves (ANNC) under some distance measure $delta$, the goal is to construct a data structure for a given set $mathcal{C}$ of curves that supports approximate near-neighbor queries: Given
We present a new regular grid search algorithm for quick fixed-radius nearest-neighbor lookup developed in Python. This module indexes a set of k-dimensional points in a regular grid, with optional periodic conditions, providing a fast approach for n
We give an improved randomized CONGEST algorithm for distance-$2$ coloring that uses $Delta^2+1$ colors and runs in $O(log n)$ rounds, improving the recent $O(log Delta cdot log n)$-round algorithm in [Halldorsson, Kuhn, Maus; PODC 20]. We then impro