ترغب بنشر مسار تعليمي؟ اضغط هنا

A survey on fiber nonlinearity compensation for 400 Gbps and beyond optical communication systems

174   0   0.0 ( 0 )
 نشر من قبل Abdelkerim Amari
 تاريخ النشر 2017
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Optical communication systems represent the backbone of modern communication networks. Since their deployment, different fiber technologies have been used to deal with optical fiber impairments such as dispersion-shifted fibers and dispersion-compensation fibers. In recent years, thanks to the introduction of coherent detection based systems, fiber impairments can be mitigated using digital signal processing (DSP) algorithms. Coherent systems are used in the current 100 Gbps wavelength-division multiplexing (WDM) standard technology. They allow the increase of spectral efficiency by using multi-level modulation formats, and are combined with DSP techniques to combat the linear fiber distortions. In addition to linear impairments, the next generation 400 Gbps/1 Tbps WDM systems are also more affected by the fiber nonlinearity due to the Kerr effect. At high input power, the fiber nonlinear effects become more important and their compensation is required to improve the transmission performance. Several approaches have been proposed to deal with the fiber nonlinearity. In this paper, after a brief description of the Kerr-induced nonlinear effects, a survey on the fiber nonlinearity compensation (NLC) techniques is provided. We focus on the well-known NLC techniques and discuss their performance, as well as their implementation and complexity. An extension of the inter-subcarrier nonlinear interference canceler approach is also proposed. A performance evaluation of the well-known NLC techniques and the proposed approach is provided in the context of Nyquist and super-Nyquist superchannel systems.



قيم البحث

اقرأ أيضاً

Meeting the ever-growing information rate demands has become of utmost importance for optical communication systems. However, it has proven to be a challenging task due to the presence of Kerr effects, which have largely been regarded as a major bott leneck for enhancing the achievable information rates in modern optical communications. In this work, the optimisation and performance of digital nonlinearity compensation are discussed for maximising the achievable information rates in spectrally-efficient optical fibre communication systems. It is found that, for any given target information rate, there exists a trade-off between modulation format and compensated bandwidth to reduce the computational complexity requirement of digital nonlinearity compensation.
In this paper, we propose a linear polarization coding scheme (LPC) combined with the phase conjugated twin signals (PCTS) technique, referred to as LPC-PCTS, for fiber nonlinearity mitigation in coherent optical orthogonal frequency division multipl exing (CO-OFDM) systems. The LPC linearly combines the data symbols on the adjacent subcarriers of the OFDM symbol, one at full amplitude and the other at half amplitude. The linearly coded data is then transmitted as phase conjugate pairs on the same subcarriers of the two OFDM symbols on the two orthogonal polarizations. The nonlinear distortions added to these subcarriers are essentially anti-correlated, since they carry phase conjugate pairs of data. At the receiver, the coherent superposition of the information symbols received on these pairs of subcarriers eventually leads to the cancellation of the nonlinear distortions. We conducted numerical simulation of a single channel 200 Gb/s CO-OFDM system employing the LPCPCTS technique. The results show that a Q-factor improvement of 2.3 dB and 1.7 dB with and without the dispersion symmetry, respectively, when compared to the recently proposed phase conjugated subcarrier coding (PCSC) technique, at an average launch power of 3 dBm. In addition, our proposed LPCPCTS technique shows a significant performance improvement when compared to the 16-quadrature amplitude modulation (QAM) with phase conjugated twin waves (PCTW) scheme, at the same spectral efficiency, for an uncompensated transmission distance of 2800 km.
Fiber Kerr nonlinearity is a fundamental limitation to the achievable capacity of long-distance optical fiber communication. Digital back-propagation (DBP) is a primary methodology to mitigate both linear and nonlinear impairments by solving the inve rse-propagating nonlinear Schrodinger equation (NLSE), which requires detailed link information. Recently, the paradigms based on neural network (NN) were proposed to mitigate nonlinear transmission impairments in optical communication systems. However, almost all neural network-based equalization schemes yield high computation complexity, which prevents the practical implementation in commercial transmission systems. In this paper, we propose a center-oriented long short-term memory network (Co-LSTM) incorporating a simplified mode with a recycling mechanism in the equalization operation, which can mitigate fiber nonlinearity in coherent optical communication systems with ultralow complexity. To validate the proposed methodology, we carry out an experiment of ten-channel wavelength division multiplexing (WDM) transmission with 64 Gbaud polarization-division-multiplexed 16-ary quadrature amplitude modulation (16-QAM) signals. Co-LSTM and DBP achieve a comparable performance of nonlinear mitigation. However, the complexity of Co-LSTM with a simplified mode is almost independent of the transmission distance, which is much lower than that of the DBP. The proposed Co-LSTM methodology presents an attractive approach for low complexity nonlinearity mitigation with neural networks.
In this paper, the performance of adaptive turbo equalization for nonlinearity compensation (NLC) is investigated. A turbo equalization scheme is proposed where a recursive least-squares (RLS) algorithm is used as an adaptive channel estimator to tra ck the time-varying intersymbol interference (ISI) coefficients associated with inter-channel nonlinear interference (NLI) model. The estimated channel coefficients are used by a MIMO 2x2 soft-input soft-output (SISO) linear minimum mean square error (LMMSE) equalizer to compensate for the time-varying ISI. The SISO LMMSE equalizer and the SISO forward error correction (FEC) decoder exchange extrinsic information in every turbo iteration, allowing the receiver to improve the performance of the channel estimation and the equalization, achieving lower bit-error-rate (BER) values. The proposed scheme is investigated for polarization multiplexed 64QAM and 256QAM, although it applies to any proper modulation format. Extensive numerical results are presented. It is shown that the scheme allows up to 0.7 dB extra gain in effectively received signal-to-noise ratio (SNR) and up to 0.2 bits/symbol/pol in generalized mutual information (GMI), on top of the gain provided by single-channel digital backpropagation.
A perturbation-based nonlinear compensation scheme assisted by a feedback from the forward error correction (FEC) decoder is numerically and experimentally investigated. It is shown by numerical simulations and transmission experiments that a feedbac k from the FEC decoder enables improved compensation performance, allowing the receiver to operate very close to the full data-aided performance bounds. The experimental analysis considers the dispersion uncompensated transmission of a 5 x 32 GBd WDM system with DP-16QAM and DP-64QAM after 4200 km and 1120 km, respectively. The experimental results show that the proposed scheme outperforms single-channel digital backpropagation. A perturbation-based nonlinear compensation scheme assisted by a feedback from the forward error correction (FEC) decoder is numerically and experimentally investigated. It is shown by numerical simulations and transmission experiments that a feedback from the FEC decoder enables improved compensation performance, allowing the receiver to operate very close to the full data-aided performance bounds. The experimental analysis considers the dispersion uncompensated transmission of a 5 x 32 GBd WDM system with DP-16QAM and DP-64QAM after 4200 km and 1120 km, respectively. The experimental results show that the proposed scheme outperforms single-channel digital backpropagation.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا