ﻻ يوجد ملخص باللغة العربية
We theoretically study noise-induced phase switch phenomena in an inertial majority-vote (IMV) model introduced in a recent paper [Phys. Rev. E 95, 042304 (2017)]. The IMV model generates a strong hysteresis behavior as the noise intensity $f$ goes forward and backward, a main characteristic of a first-order phase transition, in contrast to a second-order phase transition in the original MV model. Using the Wentzel-Kramers-Brillouin approximation for the master equation, we reduce the problem to finding the zero-energy trajectories in an effective Hamiltonian system, and the mean switching time depends exponentially on the associated action and the number of particles $N$. Within the hysteresis region, we find that the actions along the optimal forward switching path from ordered phase (OP) to disordered phase (DP) and its backward path, show distinct variation trends with $f$, and intersect at $f=f_c$ that determines the coexisting line of OP and DP. This results in a nonmonotonic dependence of the mean switching time between two symmetric OPs on $f$, with a minimum at $f_c$ for sufficiently large $N$. Finally, the theoretical results are validated by Monte Carlo simulations.
In this paper, we generalize the original majority-vote (MV) model with noise from two states to arbitrary $q$ states, where $q$ is an integer no less than two. The main emphasis is paid to the comparison on the nature of phase transitions between th
Non-Markovian dynamics pervades human activity and social networks and it induces memory effects and burstiness in a wide range of processes including inter-event time distributions, duration of interactions in temporal networks and human mobility. H
The stationary critical properties of the isotropic majority vote model on random lattices with quenched connectivity disorder are calculated by using Monte Carlo simulations and finite size analysis. The critical exponents $gamma$ and $beta$ are fou
On Archimedean lattices, the Ising model exhibits spontaneous ordering. Three examples of these lattices of the majority-vote model with noise are considered and studied through extensive Monte Carlo simulations. The order/disorder phase transition i
Through Monte Carlo Simulation, the well-known majority-vote model has been studied with noise on directed random graphs. In order to characterize completely the observed order-disorder phase transition, the critical noise parameter $q_c$, as well as