ترغب بنشر مسار تعليمي؟ اضغط هنا

Results from EDGES High-Band: I. Constraints on Phenomenological Models for the Global $21$ cm Signal

91   0   0.0 ( 0 )
 نشر من قبل Raul Monsalve Dr
 تاريخ النشر 2017
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We report constraints on the global $21$ cm signal due to neutral hydrogen at redshifts $14.8 geq z geq 6.5$. We derive our constraints from low foreground observations of the average sky brightness spectrum conducted with the EDGES High-Band instrument between September $7$ and October $26$, $2015$. Observations were calibrated by accounting for the effects of antenna beam chromaticity, antenna and ground losses, signal reflections, and receiver parameters. We evaluate the consistency between the spectrum and phenomenological models for the global $21$ cm signal. For tanh-based representations of the ionization history during the epoch of reionization, we rule out, at $geq2sigma$ significance, models with duration of up to $Delta z = 1$ at $zapprox8.5$ and higher than $Delta z = 0.4$ across most of the observed redshift range under the usual assumption that the $21$ cm spin temperature is much larger than the temperature of the cosmic microwave background (CMB) during reionization. We also investigate a `cold IGM scenario that assumes perfect Ly$alpha$ coupling of the $21$ cm spin temperature to the temperature of the intergalactic medium (IGM), but that the IGM is not heated by early stars or stellar remants. Under this assumption, we reject tanh-based reionization models of duration $Delta z lesssim 2$ over most of the observed redshift range. Finally, we explore and reject a broad range of Gaussian models for the $21$ cm absorption feature expected in the First Light era. As an example, we reject $100$ mK Gaussians with duration (full width at half maximum) $Delta z leq 4$ over the range $14.2geq zgeq 6.5$ at $geq2sigma$ significance.

قيم البحث

اقرأ أيضاً

The redshifted 21-cm signal of neutral Hydrogen is a promising probe into the period of evolution of our Universe when the first stars were formed (Cosmic Dawn), to the period where the entire Universe changed its state from being completely neutral to completely ionized (Reionization). The most striking feature of this line of neutral Hydrogen is that it can be observed across an entire frequency range as a sky-averaged continuous signature, or its fluctuations can be measured using an interferometer. However, the 21-cm signal is very faint and is dominated by a much brighter Galactic and extra-galactic foregrounds, making it an observational challenge. We have used different physical models to simulate various realizations of the 21-cm Global signals, including an excess radio background to match the amplitude of the EDGES 21-cm signal. First, we have used an artificial neural network (ANN) to extract the astrophysical parameters from these simulated datasets. Then, mock observations were generated by adding a physically motivated foreground model and an ANN was used to extract the astrophysical parameters from such data. The $R^2$ score of our predictions from the mock-observations is in the range of 0.65-0.89. We have used this ANN to predict the signal parameters giving the EDGES data as the input. We find that the reconstructed signal closely mimics the amplitude of the reported detection. The recovered parameters can be used to infer the physical state of the gas at high redshifts.
Spectral distortions in the cosmic microwave background over the 40--200~MHz band are imprinted by neutral hydrogen in the intergalactic medium prior to the end of reionization. This signal, produced in the redshift range $z = 6-34$ at the rest frame wavelength of 21 cm, has not been detected yet; and poor understanding of high redshift astrophysics results in a large uncertainty in the expected spectrum. The SARAS~2 radiometer was purposely designed to detect the sky-averaged 21-cm signal. The instrument, deployed at the Timbaktu Collective (Southern India) in April--June 2017, collected 63~hr of science data, which were examined for the presence of the cosmological 21-cm signal. In our previous work the first-light data from SARAS~2 radiometer were analyzed with Bayesian likelihood-ratio tests using $264$ plausible astrophysical scenarios. In this paper we re-examine the data using an improved analysis based on the frequentist approach and forward modeling. We show that SARAS~2 data rejects 27 models, out of which 25 are rejected at a significance $>5sigma$. All the rejected models share the scenario of inefficient heating of the primordial gas by the first population of X-ray sources along with rapid reionization.
We present the completion of a data analysis pipeline that self-consistently separates global 21-cm signals from large systematics using a pattern recognition technique. In the first paper of this series, we obtain optimal basis vectors from signal a nd foreground training sets to linearly fit both components with the minimal number of terms that best extracts the signal given its overlap with the foreground. In this second paper, we utilize the spectral constraints derived in the first paper to calculate the full posterior probability distribution of any signal parameter space of choice. The spectral fit provides the starting point for a Markov Chain Monte Carlo (MCMC) engine that samples the signal without traversing the foreground parameter space. At each MCMC step, we marginalize over the weights of all linear foreground modes and suppress those with unimportant variations by applying priors gleaned from the training set. This method drastically reduces the number of MCMC parameters, augmenting the efficiency of exploration, circumvents the need for selecting a minimal number of foreground modes, and allows the complexity of the foreground model to be greatly increased to simultaneously describe many observed spectra without requiring extra MCMC parameters. Using two nonlinear signal models, one based on EDGES observations and the other on phenomenological frequencies and temperatures of theoretically expected extrema, we demonstrate the success of this methodology by recovering the input parameters from multiple randomly simulated signals at low radio frequencies (10-200 MHz), while rigorously accounting for realistically modeled beam-weighted foregrounds.
We use the sky-average spectrum measured by EDGES High-Band ($90-190$ MHz) to constrain parameters of early galaxies independent of the absorption feature at $78$~MHz reported by Bowman et al. (2018). These parameters represent traditional models of cosmic dawn and the epoch of reionization produced with the 21cmFAST simulation code (Mesinger & Furlanetto 2007, Mesinger et al. 2011). The parameters considered are: (1) the UV ionizing efficiency ($zeta$), (2) minimum halo virial temperature hosting efficient star-forming galaxies ($T^{rm min}_{rm vir}$), (3) integrated soft-band X-ray luminosity ($L_{rm X,<,2,keV}/{rm SFR}$), and (4) minimum X-ray energy escaping the first galaxies ($E_{0}$), corresponding to a typical H${rm scriptstyle I}$ column density for attenuation through the interstellar medium. The High-Band spectrum disfavors high values of $T^{rm min}_{rm vir}$ and $zeta$, which correspond to signals with late absorption troughs and sharp reionization transitions. It also disfavors intermediate values of $L_{rm X,<,2,keV}/{rm SFR}$, which produce relatively deep and narrow troughs within the band. Specifically, we rule out $39.4<log_{10}left(L_{rm X,<,2,keV}/{rm SFR}right)<39.8$ ($95%$ C.L.). We then combine the EDGES High-Band data with constraints on the electron scattering optical depth from Planck and the hydrogen neutral fraction from high-$z$ quasars. This produces a lower degeneracy between $zeta$ and $T^{rm min}_{rm vir}$ than that reported in Greig & Mesinger (2017a) using the Planck and quasar constraints alone. Our main result in this combined analysis is the estimate $4.5$~$leq log_{10}left(T^{rm min}_{rm vir}/rm Kright)leq$~$5.7$ ($95%$ C.L.). We leave for future work the evaluation of $21$~cm models using simultaneously data from EDGES Low- and High-Band.
We present early results from a project to measure the sky-averaged (global), redshifted $21,$cm signal from the Epoch of Reionisation (EoR), using the Murchison Widefield Array (MWA) telescope. Because interferometers are not sensitive to a spatiall y-invariant global average, they cannot be used to detect this signal using standard techniques. However, lunar occultation of the radio sky imprints a spatial structure on the global signal, allowing us to measure the average brightness temperature of the patch of sky immediately surrounding the Moon. In this paper we present one night of Moon observations with the MWA between 72 - 230 MHz and verify our techniques to extract the background sky temperature from measurements of the Moons flux density. We improve upon previous work using the lunar occultation technique by using a more sophisticated model for reflected `earthshine and by employing image differencing to remove imaging artefacts. We leave the Moons (constant) radio brightness temperature as a free parameter in our fit to the data and as a result, measure $T_{rm{moon}} = 180 pm 12 $ K and a Galactic synchrotron spectral index of $-2.64pm0.14$, at the position of the Moon. Finally, we evaluate the prospects of the lunar occultation technique for a global EoR detection and map out a way forward for future work with the MWA.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا