ﻻ يوجد ملخص باللغة العربية
Discrete particle simulations are used to study the shear rheology of dense, stabilized, frictional particulate suspensions in a viscous liquid, toward development of a constitutive model for steady shear flows at arbitrary stress. These suspensions undergo increasingly strong continuous shear thickening (CST) as solid volume fraction $phi$ increases above a critical volume fraction, and discontinuous shear thickening (DST) is observed for a range of $phi$. When studied at controlled stress, the DST behavior is associated with non-monotonic flow curves of the steady-state stress as a function of shear rate. Recent studies have related shear thickening to a transition between mostly lubricated to predominantly frictional contacts with the increase in stress. In this study, the behavior is simulated over a wide range of the dimensionless parameters $(phi,tilde{sigma}$, and $mu)$, with $tilde{sigma} = sigma/sigma_0$ the dimensionless shear stress and $mu$ the coefficient of interparticle friction: the dimensional stress is $sigma$, and $sigma_0 propto F_0/ a^2$, where $F_0$ is the magnitude of repulsive force at contact and $a$ is the particle radius. The data have been used to populate the model of the lubricated-to-frictional rheology of Wyart and Cates [Phys. Rev. Lett.{bf 112}, 098302 (2014)], which is based on the concept of two viscosity divergences or textquotedblleft jammingtextquotedblright points at volume fraction $phi_{rm J}^0 = phi_{rm rcp}$ (random close packing) for the low-stress lubricated state, and at $phi_{rm J} (mu) < phi_{rm J}^0$ for any nonzero $mu$ in the frictional state; a generalization provides the normal stress response as well as the shear stress. A flow state map of this material is developed based on the simulation results.
We study the fronts that appear when a shear-thickening suspension is submitted to a sudden driving force at a boundary. Using a quasi-one-dimensional experimental geometry, we extract the front shape and the propagation speed from the suspension flo
Fine particle suspensions (such as cornstarch mixed with water) exhibit dramatic changes in viscosity when sheared, producing fascinating behaviors that captivate children and rheologists alike. Recent examination of these mixtures in simple flow geo
Discontinuous shear thickening (DST) observed in many dense athermal suspensions has proven difficult to understand and to reproduce by numerical simulation. By introducing a numerical scheme including both relevant hydrodynamic interactions and gran
Colloidal shear thickening presents a significant challenge because the macroscopic rheology becomes increasingly controlled by the microscopic details of short ranged particle interactions in the shear thickening regime. Our measurements here of the
Particles suspended in a Newtonian fluid raise the viscosity and also generally give rise to a shear-rate dependent rheology. In particular, pronounced shear thickening may be observed at large solid volume fractions. In a recent article (R. Seto, R.