ﻻ يوجد ملخص باللغة العربية
In this paper we describe the space of maximal components of the character variety of surface group representations into PSp(4,R) and Sp(4,R). For every rank 2 real Lie group of Hermitian type, we construct a mapping class group invariant complex structure on the maximal components. For the groups PSp(4,R) and Sp(4,R), we give a mapping class group invariant parameterization of each maximal component as an explicit holomorphic fiber bundle over Teichmuller space. Special attention is put on the connected components which are singular, we give a precise local description of the singularities and their geometric interpretation. We also describe the quotient of the maximal components for PSp(4,R) and Sp(4,R) by the action of the mapping class group as a holomorphic submersion over the moduli space of curves. These results are proven in two steps, first we use Higgs bundles to give a non-mapping class group equivariant parameterization, then we prove an analogue of Labouries conjecture for maximal PSp(4,R) representations.
Let M be a two cusped hyperbolic 3-manifold and let M(r) be the result of r Dehn filling of a fixed cusp of M. We study canonical components of the SL(2,C) character varieties of M(r). We show that the gonality of these sets is bounded, independent o
We extend the notion of Hitchin component from surface groups to orbifold groups and prove that this gives new examples of higher Teichm{u}ller spaces. We show that the Hitchin component of an orbifold group is homeomorphic to an open ball and we com
A $k$-differential on a Riemann surface is a section of the $k$-th power of the canonical bundle. Loci of $k$-differentials with prescribed number and multiplicities of zeros and poles form a natural stratification for the moduli space of $k$-differe
This paper is devoted to the classification of connected components of Prym eigenform loci in the strata H(2,2)^odd and H(1,1,2) in the Abelian differentials bundle in genus 3. These loci, discovered by McMullen are GL^+(2,R)-invariant submanifolds (
Let $S$ be a connected closed oriented surface of genus $g$. Given a triangulation (resp. quadrangulation) of $S$, define the index of each of its vertices to be the number of edges originating from this vertex minus $6$ (resp. minus $4$). Call the s