ترغب بنشر مسار تعليمي؟ اضغط هنا

Globular Cluster formation in a collapsing supershell

347   0   0.0 ( 0 )
 نشر من قبل Simone Recchi
 تاريخ النشر 2017
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Primordial clouds are supposed to host the so-called population III stars. These stars are very massive and completely metal-free. The final stage of the life of population III stars with masses between 130 and 260 solar masses is a very energetic hypernova explosion. A hypernova drives a shock, behind which a spherically symmetric very dense supershell forms, which might become gravitationally unstable, fragment, and form stars. In this paper we study under what conditions can an expanding supershell become gravitationally unstable and how the feedback of these supershell stars (SSSs) affects its surroundings. We simulate, by means of a 1-D Eulerian hydrocode, the early evolution of the primordial cloud after the hypernova explosion, the formation of SSSs, and the following evolution, once the SSSs start to release energy and heavy elements into the interstellar medium. Our results indicate that a shell, enriched with nucleosynthetic products from SSSs, propagates inwards, towards the center of the primordial cloud. In a time span of a few Myr, this inward-propagating shell reaches a distance of only a few parsec away from the center of the primordial cloud. Its density is extremely high and its temperature very low, thus the conditions for a new episode of star formation are achieved. We study what fraction of these two distinct populations of stars can remain bound and survive until the present day. We study also under what conditions can this process repeat and form multiple stellar populations. We extensively discuss whether the proposed scenario can help to explain some open questions of the formation mechanism of globular clusters.

قيم البحث

اقرأ أيضاً

Globular clusters are compact, gravitationally bound systems of up to a million stars. The GCs in the Milky Way contain some of the oldest stars known, and provide important clues to the early formation and continuing evolution of our Galaxy. More ge nerally, GCs are associated with galaxies of all types and masses, from low-mass dwarf galaxies to the most massive early-type galaxies which lie in the centres of massive galaxy clusters. GC systems show several properties which connect tightly with properties of their host galaxies. For example, the total mass of GCs in a system scales linearly with the dark matter halo mass of its host galaxy. Numerical simulations are at the point of being able to resolve globular cluster formation within a cosmological framework. Therefore, GCs link a range of scales, from the physics of star formation in turbulent gas clouds, to the large-scale properties of galaxies and their dark matter. In this Chapter we review some of the basic observational approaches for GC systems, some of their key observational properties, and describe how GCs provide important clues to the formation of their parent galaxies.
The evolution of globular cluster systems in some galaxies can be cause of merging of globulars in the very central regions. This high stellar density favours the growth of a central nucleus via swallowing of surrounding stars. The infall of stars into a nuclear black hole is here shown to be, under certain conditions, not only source of electromagnetic radiation but also a significant source of gravitational waves.
We discuss the mechanism of cluster formation in hierarchically collapsing molecular clouds. Recent evidence, both observational and numerical, suggests that molecular clouds (MCs) may be undergoing global, hierarchical gravitational collapse. The hi erarchical regime consists of small-scale collapses within larger-scale ones. The latter implies that the star formation rate increases systematically during the early stages of evolution, and occurs via filamentary flows onto hubs of higher density, mass, and velocity dispersion, and culminates a few Myr after than the small-scale collapses have started to form stars. In turn, the small-scale collapses occur in clumps embedded in the filaments, and are themselves falling into the larger potential well of the still-ongoing large-scale collapse. The stars formed in the early, small-scale collapses share the infall motion of their parent clumps towards the larger potential trough, so that the filaments feed both gaseous and stellar material to the hubs. This leads to the presence of older stars in a region where new protostars are still forming, to a scale-free or fractal structure of the clusters, in which each unit is composed of smaller-scale ones, and to the eventual merging of the subunits, explaining the observed structural features of open clusters.
We discuss the mechanism of cluster formation in a numerical simulation of a molecular cloud (MC) undergoing global hierarchical collapse (GHC). The global nature of the collapse implies that the SFR increases over time. The hierarchical nature of th e collapse consists of small-scale collapses within larger-scale ones. The large-scale collapses culminate a few Myr later than the small-scale ones and consist of filamentary flows that accrete onto massive central clumps. The small-scale collapses form clumps that are embedded in the filaments and falling onto the large-scale collapse centers. The stars formed in the early, small-scale collapses share the infall motion of their parent clumps. Thus, the filaments feed both gaseous and stellar material to the massive central clump. This leads to the presence of a few older stars in a region where new protostars are forming, and also to a self-similar structure, in which each unit is composed of smaller-scale sub-units that approach each other and may merge. Because the older stars formed in the filaments share the infall motion of the gas onto the central clump, they tend to have larger velocities and to be distributed over larger areas than the younger stars formed in the central clump. Finally, interpreting the IMF at face-value as a probability distribution implies that massive stars only form once the {it local} SFR is large enough to sample the IMF up to high masses. In combination with the increase of the SFR, this implies that massive stars tend to appear late in the evolution of the MC, and only in the central massive clumps. We discuss the correspondence of these features with observed properties of young stellar clusters, finding very good qualitative agreement, thus providing support to the scenario of global, hierarchical collapse of MCs, while explaining the origin of the observed cluster structure.
68 - Paulina Assmann 2011
Recent observations of the dwarf elliptical galaxy Scl-dE1 (Sc22) in the Sculptor group of galaxies revealed an extended globular cluster (Scl-dE1 GC1), which exhibits an extremely large core radius of about 21.2 pc. The authors of the discovery pape r speculated on whether this object could reside in its own dark matter halo and/or if it might have formed through the merging of two or more star clusters. In this paper, we present N-body simulations to explore thoroughly this particular formation scenario. We follow the merger of two star clusters within dark matter haloes of a range of masses (as well as in the absence of a dark matter halo). In order to obtain a remnant which resembles the observed extended star cluster, we find that the star formation efficiency has to be quite high (around 33 per cent) and the dark matter halo, if present at all, has to be of very low mass, i.e. raising the mass to light ratio of the object within the body of the stellar distribution by at most a factor of a few. We also find that expansion of a single star cluster following mass loss provides another viable formation path. Finally, we show that future measurements of the velocity dispersion of this system may be able to distinguish between the various scenarios we have explored.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا