ترغب بنشر مسار تعليمي؟ اضغط هنا

A First Look at Periodicity in HAWC with TeV Binaries

73   0   0.0 ( 0 )
 نشر من قبل Chad Brisbois
 تاريخ النشر 2017
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Only five binary systems have been found to emit at TeV energies. Each of these systems is composed of a massive O or B type star and a compact object (black hole or a pulsar). The type of compact object and the origin of the gamma-ray emission is unknown for most of these systems. Extending spectral observations to higher energies can help disentangle the nature of the compact object as well as the particle acceleration mechanisms present. Interestingly, the TeV emission from these systems does not always coincide with their emission in GeV or X-ray, which is how many such systems have been originally discovered. Increased coverage of these systems may allow HAWC to see precisely when in the orbit the TeV emission begins and ends. The HAWC Observatory detects TeV gamma-rays with high sensitivity, covering over two-thirds of the overhead sky every day. Applying a stacking method to known TeV binary systems can help HAWC enhance the signal from TeV binaries above the steady background from other sources in the galaxy. We will present results from this stacking analysis using 760 days of HAWC data.



قيم البحث

اقرأ أيضاً

109 - Chang Dong Rho 2017
Compact binary systems can provide us with unique information on astrophysical particle acceleration and cosmic ray production. However, only five binary systems have ever been observed in TeV $gamma$ rays. The High Altitude Water Cherenkov (HAWC) Ob servatory has high uptime (duty cycle $>95%$) and a wide field of view (2 sr), making it well-suited for observing transient sources such as binaries. Using two years of data from HAWC, we have searched for TeV emission from three known TeV binary systems in the field of view and twenty-eight TeV binary candidates. We have searched the HAWC data for evidence of orbital modulation or flares from these objects, and report estimates of their $gamma$-ray flux.
The recently completed High Altitude Water Cherenkov (HAWC) gamma-ray observatory has been taking data with a partial array for more than one year and is now operating with >95% duty cycle in its full configuration. With an instantaneous field of vie w of 2 sr, two-thirds of the sky is surveyed every day at gamma-ray energies between approximately 100 GeV and 100 TeV. Any source location in the field of view can be monitored each day, with an exposure of up to $sim$ 6 hours. These unprecedented observational capabilities allow us to continuously scan the highly variable extra-galactic gamma-ray sky. By monitoring the flaring behavior of Active Galactic Nuclei we aim to significantly increase the observational data base for characterizing particle acceleration mechanisms in these sources and for studying cosmological properties like the extra-galactic background light. In this work we present first studies of data taken between June 2013 and July 2014 with a partial array configuration. Flux light curves, binned in week-long intervals, for the TeV-emitting blazars Markarian 421 and 501 are discussed with respect to indications of flaring states and we highlight coincident multi-wavelength observations. Results for both sources show indications of gamma-ray flare observations and demonstrate that a water Cherenkov detector can monitor TeV-scale variability of extra-galactic sources on weekly time scales. The analysis methods presented here can provide daily flux measurements with a minimum time interval of one transit and will be applied to new data from the completed HAWC array for monitoring of blazars and other transients.
Pulsar binaries, in particular redback systems, provide good sources to study the pulsar wind flow and its interaction with the companion stars. {it Fermi}-LAT have proposed probable pulsar binary candidates in its catalogs. To identify pulsar binary sources from the catalog, orbital modulation search of binary candidates is an effective way. TESS observes in survey mode for a large part of the sky and thus provide an excellent data set to periodicity search of pulsar binary candidates by observing the flux variation, thought to mainly come from the stellar companion. Using TESS data we look for flux modulation of five pulsar binaries (or candidates) with reported orbital periods, including PSR J1023+0038, 3FGL J0523.3-2528, 3FGL J0212.1+5320, 3FGL J0744.1-2523 and PSR J1417-4402, demonstrating that TESS photometric data are very useful in identifying periodicities of redback-like systems. This method can be effective in searches for new pulsar binaries or similar binary systems in the future.
The High Altitude Water Cherenkov Gamma-Ray Observatory (HAWC) continuously detects TeV photons and particles within its large field-of-view, accumulating every day a deeper exposure of two thirds of the sky. We analyzed 1523~days of HAWC live data a cquired over four and a half years, in a follow-up analysis of {138} nearby ($z<0.3$) active galactic nuclei from the {em Fermi} 3FHL catalog culminating within $40^circ$ of the zenith at Sierra Negra, the HAWC site. This search for persistent TeV emission used a maximum-likelihood analysis assuming intrinsic power-law spectra attenuated by pair production of gamma-ray photons with the extragalactic background light. HAWC clearly detects persistent emission from Mkn~421 and Mkn~501, the two brightest blazars in the TeV sky, at 65$sigma$ and 17$sigma$ level, respectively. {Weaker evidence for long-term emission is found for three other known very-high energy emitters:} the radiogalaxy M87 and the BL Lac objects VER~J0521+211 and 1ES~1215+303, the later two at $zsim 0.1$. We find evidence for collective emission from the set of 30 previously reported very high-energy sources that excludes Mkn~421 and Mkn~501 with a random probability $sim 10^{-5}$. Upper limits are presented for the sample under the power-law assumption and in the predefined (0.5-2.0), (2.0-8.0) and (8.0-32.0) TeV energy intervals.
Steady gamma-ray emission up to at least 200 GeV has been detected from the solar disk in the Fermi-LAT data, with the brightest, hardest emission occurring during solar minimum. The likely cause is hadronic cosmic rays undergoing collisions in the S uns atmosphere after being redirected from ingoing to outgoing in magnetic fields, though the exact mechanism is not understood. An important new test of the gamma-ray production mechanism will follow from observations at higher energies. Only the High Altitude Water Cherenkov (HAWC) Observatory has the required sensitivity to effectively probe the Sun in the TeV range. Using three years of HAWC data from November 2014 to December 2017, just prior to the solar minimum, we search for 1--100 TeV gamma rays from the solar disk. No evidence of a signal is observed, and we set strong upper limits on the flux at a few $10^{-12}$ TeV$^{-1}$ cm$^{-2}$ s$^{-1}$ at 1 TeV. Our limit, which is the most constraining result on TeV gamma rays from the Sun, is $sim10%$ of the theoretical maximum flux (based on a model where all incoming cosmic rays produce outgoing photons), which in turn is comparable to the Fermi-LAT data near 100 GeV. The prospects for a first TeV detection of the Sun by HAWC are especially high during solar minimum, which began in early 2018.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا