ترغب بنشر مسار تعليمي؟ اضغط هنا

Application of the Bead Perturbation Technique to a Study of a Tunable 5 GHz Annular Cavity

255   0   0.0 ( 0 )
 نشر من قبل Nicholas Rapidis
 تاريخ النشر 2017
  مجال البحث فيزياء
والبحث باللغة English
 تأليف N. M. Rapidis




اسأل ChatGPT حول البحث

Microwave cavities for a Sikivie-type axion search are subject to several constraints. In the fabrication and operation of such cavities, often used at frequencies where the resonator is highly overmoded, it is important to be able to reliably identify several properties of the cavity. Those include identifying the symmetry of the mode of interest, confirming its form factor, and determining the frequency ranges where mode crossings with intruder levels cause unacceptable admixture, thus leading to the loss of purity of the mode of interest. A simple and powerful diagnostic for mapping out the electric field of a cavity is the bead perturbation technique. While a standard tool in accelerator physics, we have, for the first time, applied this technique to cavities used in the axion search. We report initial results from an extensive study for the initial cavity used in the HAYSTAC experiment. Two effects have been investigated: the role of rod misalignment in mode localization, and mode-mixing at avoided crossings of TM/TE modes. Future work will extend these results by incorporating precision metrology and high-fidelity simulations.

قيم البحث

اقرأ أيضاً

A wide variety of applications of microwave cavities, such as measurement and control of superconducting qubits, magnonic resonators, and phase noise filters, would be well served by having a highly tunable microwave resonance. Often this tunability is desired in situ at low temperatures, where one can take advantage of superconducting cavities. To date, such cryogenic tuning while maintaining a high quality factor has been limited to $sim500$ MHz. Here we demonstrate a three-dimensional superconducting microwave cavity that shares one wall with a pressurized volume of helium. Upon pressurization of the helium chamber the microwave cavity is deformed, which results in in situ tuning of its resonant frequency by more than 5 GHz, greater than 60% of the original 8 GHz resonant frequency. The quality factor of the cavity remains approximately constant at $approx7times 10^{3}$ over the entire range of tuning. As a demonstration of its usefulness, we implement a tunable cryogenic phase noise filter, which reduces the phase noise of our source by approximately 10 dB above 400 kHz.
For broadband quantum noise reduction of gravitational-wave detectors, frequency-dependent squeezed vacuum states realized using a filter cavity is a mature technique and will be implemented in Advanced LIGO and Advanced Virgo from the fourth observa tion run. To obtain the benefit of frequency-dependent squeezing, detuning and alignment of the filter cavity with respect to squeezed vacuum states must be controlled accurately. To this purpose, we suggest a new length and alignment control scheme, using coherent control sidebands which are already used to control the squeezing angle. Since both squeezed vacuum states and coherent control sidebands have the same mode matching conditions and almost the same frequency, detuning and alignment of the filter cavity can be controlled accurately with this scheme. In this paper, we show the principle of this scheme and its application to a gravitational-wave detector.
Lock acquisition of a suspended optical cavity can be a highly stochastic process and is therefore nontrivial. Guided lock is a method to make lock acquisition less stochastic by decelerating the motion of the cavity length based on an extrapolation of the motion from an instantaneous velocity measurement. We propose an improved scheme which is less susceptible to seismic disturbances by incorporating the acceleration as a higher order correction in the extrapolation. We implemented the new scheme in a 300-m suspended Fabry-Perot cavity and improved the success rate of lock acquisition by a factor of 30.
We have developed and tested an experimental technique for the measurement of low-energy (p,n) reactions in inverse kinematics relevant to nuclear astrophysics. The proposed setup is located at the ReA3 facility at the National Superconducting Cyclot ron Laboratory. In the current approach, we operate the beam-transport line in ReA3 as a recoil separator while tagging the outgoing neutrons from the (p,n) reactions with the low-energy neutron detector array (LENDA). The developed technique was verified by using the $^{40}$Ar(p,n)$^{40}$K reaction as a probe. The results of the proof-of-principle experiment with the $^{40}$Ar beam show that cross-section measurements within an uncertainty of $sim$25% are feasible with count rates up to 7 counts/mb/pnA/s. In this article, we give a detailed description of the experimental setup, and present the analysis method and results from the test experiment. Future plans on using the technique in experiments with the separator for capture reactions (SECAR) that is currently being commissioned are also discussed.
We have fabricated an array of subgap kinetic inductance detectors (SKIDs) made of granular aluminum ($T_csim$2~K) sensitive in the 80-90 GHz frequency band and operating at 300~mK. We measure a noise equivalent power of $1.3times10^{-16}$~W/Hz$^{0.5 }$ on average and $2.6times10^{-17}$~W/Hz$^{0.5}$ at best, for an illuminating power of 50~fW per pixel. Even though the circuit design of SKIDs is identical to that of the kinetic inductance detectors (KIDs), the SKIDs operating principle is based on their sensitivity to subgap excitations. This detection scheme is advantageous because it avoids having to lower the operating temperature proportionally to the lowest detectable frequency. The SKIDs presented here are intrinsically selecting the 80-90 GHz frequency band, well below the superconducting spectral gap of the film, at approximately 180 GHz.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا