ﻻ يوجد ملخص باللغة العربية
We extend the work by Mastroianni and Szabados regarding the barycentric interpolant introduced by J.-P. Berrut in 1988, for equally spaced nodes. We prove fully their first conjecture and present a proof of a weaker version of their second conjecture. More importantly than proving these conjectures, we present a sharp description of the asymptotic error incurred by the interpolants when the derivative of the interpolated function is absolutely continuous, which is a class of functions broad enough to cover most functions usually found in practice. We also contribute to the solution of the broad problem they raised regarding the order of approximation of these interpolants, by showing that they have order of approximation of order 1/n for functions with derivatives of bounded variation.
We prove a conjecture of Ambrus, Ball and Erd{e}lyi that equally spaced points maximize the minimum of discrete potentials on the unit circle whenever the potential is of the form sum_{k=1}^n f(d(z,z_k)), where $f:[0,pi]to [0,infty]$ is non-increasin
The Gaver-Stehfest algorithm is widely used for numerical inversion of Laplace transform. In this paper we provide the first rigorous study of the rate of convergence of the Gaver-Stehfest algorithm. We prove that Gaver-Stehfest approximations conver
Numerical causal derivative estimators from noisy data are essential for real time applications especially for control applications or fluid simulation so as to address the new paradigms in solid modeling and video compression. By using an analytical
This article studies the problem of approximating functions belonging to a Hilbert space $H_d$ with an isotropic or anisotropic Gaussian reproducing kernel, $$ K_d(bx,bt) = expleft(-sum_{ell=1}^dgamma_ell^2(x_ell-t_ell)^2right) mbox{for all} bx,b
We consider the geometry relaxation of an isolated point defect embedded in a homogeneous crystalline solid, within an atomistic description. We prove a sharp convergence rate for a periodic supercell approximation with respect to uniform convergence of the discrete strains.