ترغب بنشر مسار تعليمي؟ اضغط هنا

Quasar 2175 {AA} dust absorbers I: metallicity, depletion pattern, and kinematics

65   0   0.0 ( 0 )
 نشر من قبل Jingzhe Ma
 تاريخ النشر 2017
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present 13 new 2175 {AA} dust absorbers at z_abs = 1.0 - 2.2 towards background quasars from the Sloan Digital Sky Survey. These absorbers are examined in detail using data from the Echelle Spectrograph and Imager (ESI) on the Keck II telescope. Many low-ionization lines including Fe II, Zn II, Mg II, Si II, Al II, Ni II, Mn II, Cr II, Ti II, and Ca II are present in the same absorber which gives rise to the 2175 {AA} bump. The relative metal abundances (with respect to Zn) demonstrate that the depletion patterns of our 2175 {AA} dust absorbers resemble that of the Milky Way clouds although some are disk-like and some are halo-like. The 2175 {AA} dust absorbers have significantly higher depletion levels compared to literature Damped Lyman-{alpha} absorbers (DLAs) and subDLAs. The dust depletion level indicator [Fe/Zn] tends to anti-correlate with bump strengths. The velocity profiles from the Keck/ESI spectra also provide kinematical information on the dust absorbers. The dust absorbers are found to have multiple velocity components with velocity widths extending from ~100 to ~ 600 km/s, which are larger than those of most DLAs and subDLAs. Assuming the velocity width is a reliable tracer of stellar mass, the host galaxies of 2175 {AA} dust absorbers are expected to be more massive than DLA/subDLA hosts. Not all of the 2175 {AA} dust absorbers are intervening systems towards background quasars. The absorbers towards quasars J1006+1538 and J1047+3423 are proximate systems that could be associated with the quasar itself or the host galaxy.

قيم البحث

اقرأ أيضاً

CaII 3934,3969 absorbers, which are likely to be a subset of damped Lyman alpha systems, are the most dusty quasar absorbers known, with an order of magnitude more extinction in E(B-V) than other absorption systems. There is also evidence that CaII a bsorbers trace galaxies with more ongoing star-formation than the average quasar absorber. Despite this, relatively little is known in detail about these unusual absorption systems. Here we present the first high resolution spectroscopic study of 19 CaII quasar absorbers, in the range 0.6<= z_abs<=1.2, with W3934>=0.2A. Their general depletion patterns are similar to measurements in the warm halo phase of the Milky Way and Magellanic Clouds ISM. Dust depletions and alpha-enrichments profiles of sub-samples of 7 and 3 absorbers, respectively, are measured using a combination of Voigt profile fitting and apparent optical depth techniques. Deviations in [Cr/Zn]~0.3+-0.1dex and in [Si/Fe]>~0.8+-0.1dex are detected across the profile of one absorber, which we attribute to differential dust depletion. The remaining absorbers have <0.3dex (3sigma limit) variation in [Cr/Zn], much like the general DLA population, though the dustiest CaII absorbers remain relatively unprobed in our sample. A limit on electron densities in CaII absorbers, n_e<0.1cm^-3, is derived using the ratio of neutral and singly ionised species, assuming a MW-like radiation field. These electron densities may imply hydrogen densities sufficient for the presence of molecular hydrogen in the absorbers. The CaII absorber sample comprises a wide range of velocity widths, v_90=50-470km/s, and velocity structures, thus a range of physical models for their origin, from simple discs to galactic outflows and mergers, would be required to explain the observations.
We aim at assessing what are the most dominant dust species or types, including silicate and iron oxide grains present in the ISM, by using recent observations of dust depletion of galaxies at various evolutionary stages. We use the observed elementa l abundances in dust of several metals (O, S, Si, Mg, and Fe) in different environments, considering systems with different metallicities and dust content, namely damped Lyman-{alpha} absorbers (DLAs) towards quasars and the Galaxy. We derive a possible dust composition by computationally finding the statistically expected elemental abundances in dust assuming a set of key dust species with the iron content as a free parameter. Carbonaceous dust is not considered in the present study. Metallic iron (likely in the form of inclusions in silicate grains) and iron oxides is an important component of the mass composition of carbon-free dust. Iron oxides make up a significant mass fraction (~1/4 in some cases) of the oxygen-bearing dust and there are good reasons to believe that metallic iron constitutes a similar mass fraction of dust. Wustite (FeO) could be a simple explanation for the depletion of iron and oxygen because it is easily formed. There appears to be no silicate species clearly dominating the silicate mass, but rather a mix of iron-poor as well as iron-rich olivine and pyroxene. To what extent sulphur depletion is due to sulfides remains unclear. In general, there seems to be little evolution of the dust composition (not considering carbonaceous dust) from low-metallicity systems to the Galaxy.
We present a study of the extinction and depletion-derived dust properties of gamma-ray burst (GRB) absorbers at $1<z<3$ showing the presence of neutral carbon (ion{C}{I}). By modelling their parametric extinction laws, we discover a broad range of d ust models characterizing the GRB ion{C}{I} absorption systems. In addition to the already well-established correlation between the amount of ion{C}{I} and visual extinction, $A_V$, we also observe a correlation with the total-to-selective reddening, $R_V$. All three quantities are also found to be connected to the presence and strength of the 2175,{AA} dust extinction feature. While the amount of ion{C}{I} is found to be correlated with the SED-derived dust properties, we do not find any evidence for a connection with the depletion-derived dust content as measured from [Zn/Fe] and $N$(Fe)$_{rm dust}$. To reconcile this, we discuss a scenario where the observed extinction is dominated by the composition of dust particles confined in the molecular gas-phase of the ISM. We argue that since the depletion level trace non-carbonaceous dust in the ISM, the observed extinction in GRB ion{C}{I} absorbers is primarily produced by carbon-rich dust in the molecular cloud and is therefore only observable in the extinction curves and not in the depletion patterns. This also indicates that the 2175,{AA} dust extinction feature is caused by dust and molecules in the cold and molecular gas-phase. This scenario provides a possible resolution to the discrepancy between the depletion- and SED-derived amounts of dust in high-$z$ absorbers.
We present a novel approach to measure the attenuation curves of 485 individual star-forming galaxies with M$_*$ $>$ 10$^{10}$ M$_{odot}$ based on deep optical spectra from the VLT/VIMOS LEGA-C survey and multi-band photometry in the COSMOS field. Mo st importantly, we find that the attenuation curves in the rest-frame $3000-4500$A range are typically almost twice as steep as the Milky Way, LMC, SMC, and Calzetti attenuation curves, which is in agreement with recent studies of the integrated light of present-day galaxies. The attenuation at $4500$A and the slope strongly correlate with the galaxy inclination: face-on galaxies show less attenuation and steeper curves compared to edge-on galaxies, suggesting that geometric effects dominate observed variations in attenuation. Our new method produces $2175$A UV bump detections for 260 individual galaxies. Even though obvious correlations between UV bump strength and global galaxy properties are absent, strong UV bumps are most often seen in face-on, lower-mass galaxies (10 $<$ log$_{10}$(M$_*$/M$_{odot}$) $<$ 10.5) with low overall attenuation. Finally, we produce a typical attenuation curve for star-forming galaxies at $zsim0.8$; this prescription represents the effect of dust on the integrated spectral energy distributions of high-redshift galaxies more accurately than commonly used attenuation laws.
We present the Voigt profile (VP) models, column densities, Doppler b parameters, kinematics, and distribution of components for 422 MgII absorbers found in a survey of 249 HIRES and UVES quasar spectra. The equivalent width range of the sample is 0. 006 < W_r(2796) < 6.23 angstroms (A) and the redshift range is 0.19 < z < 2.55, with a mean of <z> = 1.18. Based on historical precedent, we classified 180 absorbers as weak systems (W_r(2796) < 0.3 A) and 242 as strong systems (W_r(2796) >= 0.3 A). Assuming a minimum number of significant components per system, the VP fitting, yielded a total of 2,989 components, with an average of 2.7 and 10.3 components found for the weak and strong MgII subsamples, respectively. The VP component line density for the full sample is 8.62 +/- 0.23 clouds/A. The distribution of VP component column density over the range 12.4 < log[N(MgII)] < 17.0 [ions cm^-2] is well modeled with a power-law slope of -1.45 +/- 0.01. The median Doppler b parameters are 4.5 +/- 3.5 km/s, 6.0 +/- 4.5 km/s and 5.7 +/- 4.4 km/s for the weak, strong, and full samples. We modeled the probability of component velocity splitting (the two-point velocity correlation function, TPCF) of our full sample using a three-component composite Gaussian function. Our resulting velocity dispersions are 25.4, 68.7, and 207.1 km/s, respectively. These data provide an excellent database for studying the cosmic evolution of MgII absorber kinematic evolution.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا