ﻻ يوجد ملخص باللغة العربية
We study the infimum of the renormalized volume for convex-cocompact hyperbolic manifolds, as well as describing how a sequence converging to such values behaves. In particular, we show that the renormalized volume is continuous under the appropriate notion of limit. This result generalizes previous work in the subject.
We extend the concept of renormalized volume for geometrically finite hyperbolic $3$-manifolds, and show that is continuous for geometrically convergent sequences of hyperbolic structures over an acylindrical 3-manifold $M$ with geometrically finite
In this article we show that for any given Riemann surface $Sigma$ of genus $g$, we can bound (from above) the renormalized volume of a (hyperbolic) Schottky group with boundary at infinity conformal to $Sigma$ in terms of the genus and the combined
We reinterpret the renormalized volume as the asymptotic difference of the isoperimetric profiles for convex co-compact hyperbolic 3-manifolds. By similar techniques we also prove a sharp Minkowski inequality for horospherically convex sets in $mathb
We study the critical points of the renormalized volume for acylindrical geometrically finite hyperbolic 3-manifolds that include rank-1 cusps, and show that the renormalized volume is locally convex around these critical points. We give a modified d
Given a geodesic inside a simply-connected, complete, non-positively curved Riemannian (NPCR) manifold M, we get an associated geodesic inside the asymptotic cone Cone(M). Under mild hypotheses, we show that if the latter is contained inside a bi-Lip