ترغب بنشر مسار تعليمي؟ اضغط هنا

When Is the First Spurious Variable Selected by Sequential Regression Procedures?

101   0   0.0 ( 0 )
 نشر من قبل Weijie J. Su
 تاريخ النشر 2017
  مجال البحث الاحصاء الرياضي
والبحث باللغة English
 تأليف Weijie J. Su




اسأل ChatGPT حول البحث

Applied statisticians use sequential regression procedures to produce a ranking of explanatory variables and, in settings of low correlations between variables and strong true effect sizes, expect that variables at the very top of this ranking are truly relevant to the response. In a regime of certain sparsity levels, however, three examples of sequential procedures--forward stepwise, the lasso, and least angle regression--are shown to include the first spurious variable unexpectedly early. We derive a rigorous, sharp prediction of the rank of the first spurious variable for these three procedures, demonstrating that the first spurious variable occurs earlier and earlier as the regression coefficients become denser. This counterintuitive phenomenon persists for statistically independent Gaussian random designs and an arbitrarily large magnitude of the true effects. We gain a better understanding of the phenomenon by identifying the underlying cause and then leverage the insights to introduce a simple visualization tool termed the double-ranking diagram to improve on sequential methods. As a byproduct of these findings, we obtain the first provable result certifying the exact equivalence between the lasso and least angle regression in the early stages of solution paths beyond orthogonal designs. This equivalence can seamlessly carry over many important model selection results concerning the lasso to least angle regression.



قيم البحث

اقرأ أيضاً

Assuming that data are collected sequentially from independent streams, we consider the simultaneous testing of multiple binary hypotheses under two general setups; when the number of signals (correct alternatives) is known in advance, and when we on ly have a lower and an upper bound for it. In each of these setups, we propose feasible procedures that control, without any distributional assumptions, the familywise error probabilities of both type I and type II below given, user-specified levels. Then, in the case of i.i.d. observations in each stream, we show that the proposed procedures achieve the optimal expected sample size, under every possible signal configuration, asymptotically as the two error probabilities vanish at arbitrary rates. A simulation study is presented in a completely symmetric case and supports insights obtained from our asymptotic results, such as the fact that knowledge of the exact number of signals roughly halves the expected number of observations compared to the case of no prior information.
Regularization aims to improve prediction performance of a given statistical modeling approach by moving to a second approach which achieves worse training error but is expected to have fewer degrees of freedom, i.e., better agreement between trainin g and prediction error. We show here, however, that this expected behavior does not hold in general. In fact, counter examples are given that show regularization can increase the degrees of freedom in simple situations, including lasso and ridge regression, which are the most common regularization approaches in use. In such situations, the regularization increases both training error and degrees of freedom, and is thus inherently without merit. On the other hand, two important regularization scenarios are described where the expected reduction in degrees of freedom is indeed guaranteed: (a) all symmetric linear smoothers, and (b) linear regression versus convex constrained linear regression (as in the constrained variant of ridge regression and lasso).
We study the problem of high-dimensional variable selection via some two-step procedures. First we show that given some good initial estimator which is $ell_{infty}$-consistent but not necessarily variable selection consistent, we can apply the nonne gative Garrote, adaptive Lasso or hard-thresholding procedure to obtain a final estimator that is both estimation and variable selection consistent. Unlike the Lasso, our results do not require the irrepresentable condition which could fail easily even for moderate $p_n$ (Zhao and Yu, 2007) and it also allows $p_n$ to grow almost as fast as $exp(n)$ (for hard-thresholding there is no restriction on $p_n$). We also study the conditions under which the Ridge regression can be used as an initial estimator. We show that under a relaxed identifiable condition, the Ridge estimator is $ell_{infty}$-consistent. Such a condition is usually satisfied when $p_nle n$ and does not require the partial orthogonality between relevant and irrelevant covariates which is needed for the univariate regression in (Huang et al., 2008). Our numerical studies show that when using the Lasso or Ridge as initial estimator, the two-step procedures have a higher sparsity recovery rate than the Lasso or adaptive Lasso with univariate regression used in (Huang et al., 2008).
The lasso and related sparsity inducing algorithms have been the target of substantial theoretical and applied research. Correspondingly, many results are known about their behavior for a fixed or optimally chosen tuning parameter specified up to unk nown constants. In practice, however, this oracle tuning parameter is inaccessible so one must use the data to select one. Common statistical practice is to use a variant of cross-validation for this task. However, little is known about the theoretical properties of the resulting predictions with such data-dependent methods. We consider the high-dimensional setting with random design wherein the number of predictors $p$ grows with the number of observations $n$. Under typical assumptions on the data generating process, similar to those in the literature, we recover oracle rates up to a log factor when choosing the tuning parameter with cross-validation. Under weaker conditions, when the true model is not necessarily linear, we show that the lasso remains risk consistent relative to its linear oracle. We also generalize these results to the group lasso and square-root lasso and investigate the predictive and model selection performance of cross-validation via simulation.
This article is concerned with the Bridge Regression, which is a special family in penalized regression with penalty function $sum_{j=1}^{p}|beta_j|^q$ with $q>0$, in a linear model with linear restrictions. The proposed restricted bridge (RBRIDGE) e stimator simultaneously estimates parameters and selects important variables when a prior information about parameters are available in either low dimensional or high dimensional case. Using local quadratic approximation, the penalty term can be approximated around a local initial values vector and the RBRIDGE estimator enjoys a closed-form expression which can be solved when $q>0$. Special cases of our proposal are the restricted LASSO ($q=1$), restricted RIDGE ($q=2$), and restricted Elastic Net ($1< q < 2$) estimators. We provide some theoretical properties of the RBRIDGE estimator under for the low dimensional case, whereas the computational aspects are given for both low and high dimensional cases. An extensive Monte Carlo simulation study is conducted based on different prior pieces of information and the performance of the RBRIDGE estiamtor is compared with some competitive penalty estimators as well as the ORACLE. We also consider four real data examples analysis for comparison sake. The numerical results show that the suggested RBRIDGE estimator outperforms outstandingly when the prior is true or near exact
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا