ترغب بنشر مسار تعليمي؟ اضغط هنا

The first detection of a pulsar with ALMA

49   0   0.0 ( 0 )
 نشر من قبل Roberto Mignani
 تاريخ النشر 2017
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Pulsars are neutron stars, stellar corpses left over after supernova explosions of stars about ten times as massive as our Sun, with densities comparable to the atomic nucleus, spinning with periods from few milliseconds up to few seconds, and endowed with magnetic fields thousands billion times stronger than the Earths, where particles are accelerated to the relativistic regime producing electromagnetic radiation across the entire spectrum. Although there is a general consensus on the fact that pulsars radio emission is coherent in nature, whereas the emission from the optical to high-energy $gamma$-rays is due to incoherent processes, it has not been established yet at which wavelengths the transition occurs, a key information for all emission models of pulsar magnetospheres. Of course, to address this issue covering the spectral region between high-frequency radio waves and the mid-IR is crucial. We used the Atacama Large Millimetre Array (ALMA) to observe the Vela pulsar (PSR, B0833$-$45), one of the very few observed in radio and from the mid-infrared up to the very high-energy $gamma$-rays. We detected Vela at frequencies of 97.5, 145, 233, 343.5 GHz and found that its energy density spectrum follows a power-law of spectral index $alpha = -0.93 pm 0.16$. The ALMA spectrum corresponds to very high brightness temperatures - from $10^{17}$ to $10^{15}$ K - suggesting that a coherent radiative process still contributes to the mm/sub-mm emission. This is, therefore, the first indication of coherent emission other than radio originating in pulsars. At the same time, we identified an extended structure, preliminarily detected in ground-based observations. We support its interpretation as a counter-jet protruding from the pulsar.

قيم البحث

اقرأ أيضاً

Pulsar timing experiments typically generate a phase-connected timing solution from a sequence of times-of-arrival (TOAs) by absolute pulse numbering, i.e. by fitting an integer number of pulses between TOAs in order to minimize the residuals with re spect to a parametrized phase model. In this observing mode, rotational glitches are discovered, when the residuals of the no-glitch phase model diverge after some epoch, and glitch parameters are refined by Bayesian follow-up. Here an alternative, complementary approach is presented which tracks the pulse frequency $f$ and its time derivative $df/dt$ with a hidden Markov model (HMM), whose dynamics include stochastic spin wandering (timing noise) and impulsive jumps in $f$ and $df/dt$ (glitches). The HMM tracks spin wandering explicitly, as a specific realization of a discrete-time Markov chain. It discovers glitches by comparing the Bayes factor for glitch and no-glitch models. It ingests standard TOAs for convenience and, being fully automated, allows performance bounds to be calculated quickly via Monte Carlo simulations. Practical, user-oriented plots are presented of the false alarm probability and detection threshold (e.g. minimum resolvable glitch size) versus observational scheduling parameters (e.g. TOA uncertainty, mean delay between TOAs) and glitch parameters (e.g. transient and permanent jump sizes, exponential recovery time-scale). The HMM is also applied to $sim 1$ yr of real data bracketing the 2016 December 12 glitch in PSR J0835-4510 as a proof of principle. It detects the known glitch and confirms that no other glitch exists in the same data with size $> 10^{-7} f$.
We report on the first detection of pulsed radio emission from a radio pulsar with the ALMA telescope. The detection was made in the Band-3 frequency range (85-101 GHz) using ALMA in the phased-array mode developed for VLBI observations. A software p ipeline has been implemented to enable a regular pulsar observing mode in the future. We describe the pipeline and demonstrate the capability of ALMA to perform pulsar timing and searching. We also measure the flux density and polarization properties of the Vela pulsar (PSR J0835$-$4510) at mm-wavelengths, providing the first polarimetric study of any ordinary pulsar at frequencies above 32 GHz. Finally, we discuss the lessons learned from the Vela observations for future pulsar studies with ALMA, particularly for searches near the supermassive black hole in the Galactic Center, and the potential of using pulsars for polarization calibration of ALMA.
Pulsars traveling at supersonic speeds are often accompanied by cometary bow shocks seen in Halpha. We report on the first detection of a pulsar bow shock in the far-ultraviolet (FUV). We detected it in FUV images of the nearest millisecond pulsar J0 437-4715 obtained with the Hubble Space Telescope. The images reveal a bow-like structure positionally coincident with part of the previously detected Halpha bow shock, with an apex at 10 ahead of the moving pulsar. Its FUV luminosity, L(1250-2000 A) ~ 5x10^28 erg/s, exceeds the Halpha luminosity from the same area by a factor of 10. The FUV emission could be produced by the shocked ISM matter or, less likely, by relativistic pulsar wind electrons confined by strong magnetic field fluctuations in the bow shock. In addition, in the FUV images we found a puzzling extended (~3 in size) structure overlapping with the limb of the bow shock. If related to the bow shock, it could be produced by an inhomogeneity in the ambient medium or an instability in the bow shock. We also report on a previously undetected X-ray emission extending for about 5 ahead of the pulsar, possibly a pulsar wind nebula created by shocked pulsar wind, with a luminosity L(0.5-8 keV) ~ 3x10^28 erg/s.
We report the detection of a glitch event in the pulsar J1709$-$4429 (also known as B1706$-$44) during regular monitoring observations with the Molonglo Observatory Synthesis Telescope (UTMOST). The glitch was found during timing operations, in which we regularly observe over 400 pulsars with up to daily cadence, while commensally searching for Rotating Radio Transients, pulsars, and FRBs. With a fractional size of $Delta u/ u approx 52.4 times10^{-9}$, the glitch reported here is by far the smallest known for this pulsar, attesting to the efficacy of glitch searches with high cadence using UTMOST.
The Galactic Center supermassive black hole Sagittarius A* (Sgr A*) is one of the most promising targets to study the dynamics of black hole accretion and outflow via direct imaging with very long baseline interferometry (VLBI). At 3.5 mm (86 GHz), t he emission from Sgr A* is resolvable with the Global Millimeter VLBI Array (GMVA). We present the first observations of Sgr A* with the phased Atacama Large Millimeter/submillimeter Array (ALMA) joining the GMVA. Our observations achieve an angular resolution of ~87{mu}as, improving upon previous experiments by a factor of two. We reconstruct a first image of the unscattered source structure of Sgr A* at 3.5 mm, mitigating effects of interstellar scattering. The unscattered source has a major axis size of 120 $pm$ 34{mu}as (12 $pm$ 3.4 Schwarzschild radii), and a symmetrical morphology (axial ratio of 1.2$^{+0.3}_{-0.2}$), which is further supported by closure phases consistent with zero within 3{sigma}. We show that multiple disk-dominated models of Sgr A* match our observational constraints, while the two jet-dominated models considered are constrained to small viewing angles. Our long-baseline detections to ALMA also provide new constraints on the scattering of Sgr A*, and we show that refractive scattering effects are likely to be weak for images of Sgr A* at 1.3 mm with the Event Horizon Telescope. Our results provide the most stringent constraints to date for the intrinsic morphology and refractive scattering of Sgr A*, demonstrating the exceptional contribution of ALMA to millimeter VLBI.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا