ﻻ يوجد ملخص باللغة العربية
The formation of quasi-spherical cages from protein building blocks is a remarkable self-assembly process in many natural systems, where a small number of elementary building blocks are assembled to build a highly symmetric icosahedral cage. In turn, this has inspired synthetic biologists to design de novo protein cages. We use simple models, on multiple scales, to investigate the self-assembly of a spherical cage, focusing on the regularity of the packing of protein-like objects on the surface. Using building blocks, which are able to pack with icosahedral symmetry, we examine how stable these highly symmetric structures are to perturbations that may arise from the interplay between flexibility of the interacting blocks and entropic effects. We find that, in the presence of those perturbations, icosahedral packing is not the most stable arrangement for a wide range of parameters; rather disordered structures are found to be the most stable. Our results suggest that (i) many designed, or even natural, protein cages may not be regular in the presence of those perturbations, and (ii) that optimizing those flexibilities can be a possible design strategy to obtain regular synthetic cages with full control over their surface properties.
We report on the buckling and subsequent collapse of orthotropic elastic spherical shells under volume and pressure control. Going far beyond what is known for isotropic shells, a rich morphological phase space with three distinct regimes emerges upo
The dense packing of interacting particles on spheres has proved to be a useful model for virus capsids and colloidosomes. Indeed, icosahedral symmetry observed in virus capsids corresponds to potential energy minima that occur for magic numbers of,
We investigate the mechanical response of jammed packings of circulo-lines, interacting via purely repulsive, linear spring forces, as a function of pressure $P$ during athermal, quasistatic isotropic compression. Prior work has shown that the ensemb
Chiral heteropolymers such as larger globular proteins can simultaneously support multiple length scales. The interplay between different scales brings about conformational diversity, and governs the structure of the energy landscape. Multiple scales
Within the framework of continuum theory, we draw a parallel between ferromagnetic materials and nematic liquid crystals confined on curved surfaces, which are both characterized by local interaction and anchoring potentials. We show that the extrins