ﻻ يوجد ملخص باللغة العربية
Given an integer $1leq j <n$, define the $(j)$-coloring of a $n$-dimensional hypercube $H_{n}$ to be the $2$-coloring of the edges of $H_{n}$ in which all edges in dimension $i$, $1leq i leq j$, have color $1$ and all other edges have color $2$. Cheng et al. [Proper distance in edge-colored hypercubes, Applied Mathematics and Computation 313 (2017) 384-391.] determined the number of distinct shortest properly colored paths between a pair of vertices for the $(1)$-colored hypercubes. It is natural to consider the number for $(j)$-coloring, $jgeq 2$. In this note, we determine the number of different shortest proper paths in $(j)$-colored hypercubes for arbitrary $j$.
A frequency $n$-cube $F^n(4;2,2)$ is an $n$-dimensional $4$-by-...-by-$4$ array filled by $0$s and $1$s such that each line contains exactly two $1$s. We classify the frequency $4$-cubes $F^4(4;2,2)$, find a testing set of size $25$ for $F^3(4;2,2)$,
In an edge-colored graph $(G,c)$, let $d^c(v)$ denote the number of colors on the edges incident with a vertex $v$ of $G$ and $delta^c(G)$ denote the minimum value of $d^c(v)$ over all vertices $vin V(G)$. A cycle of $(G,c)$ is called proper if any t
Let $mathcal{C}$ be a family of edge-colored graphs. A $t$-edge colored graph $G$ is $(mathcal{C}, t)$-saturated if $G$ does not contain any graph in $mathcal{C}$ but the addition of any edge in any color in $[t]$ creates a copy of some graph in $mat
Let $F$ be a fixed graph. The rainbow Turan number of $F$ is defined as the maximum number of edges in a graph on $n$ vertices that has a proper edge-coloring with no rainbow copy of $F$ (where a rainbow copy of $F$ means a copy of $F$ all of whose e
It is conjectured that every edge-colored complete graph $G$ on $n$ vertices satisfying $Delta^{mon}(G)leq n-3k+1$ contains $k$ vertex-disjoint properly edge-colored cycles. We confirm this conjecture for $k=2$, prove several additional weaker result