ﻻ يوجد ملخص باللغة العربية
Biological neurons receive multiple noisy oscillatory signals, and their dynamical response to the superposition of these signals is of fundamental importance for information processing in the brain. Here we study the response of neural systems to the weak envelope modulation signal, which is superimposed by two periodic signals with different frequencies. We show that stochastic resonance occurs at the beat frequency in neural systems at the single-neuron as well as the population level. The performance of this frequency-difference-dependent stochastic resonance is influenced by both the beat frequency and the two forcing frequencies. Compared to a single neuron, a population of neurons is more efficient in detecting the information carried by the weak envelope modulation signal at the beat frequency. Furthermore, an appropriate fine-tuning of the excitation-inhibition balance can further optimize the response of a neural ensemble to the superimposed signal. Our results thus introduce and provide insights into the generation and modulation mechanism of the frequency-difference-dependent stochastic resonance in neural systems.
Rhythmic activity has been associated with a wide range of cognitive processes. Previous studies have shown that spike-timing-dependent plasticity can facilitate the transfer of rhythmic activity downstream the information processing pathway. However
Noise is an inherent part of neuronal dynamics, and thus of the brain. It can be observed in neuronal activity at different spatiotemporal scales, including in neuronal membrane potentials, local field potentials, electroencephalography, and magnetoe
The understanding of neural activity patterns is fundamentally linked to an understanding of how the brains network architecture shapes dynamical processes. Established approaches rely mostly on deviations of a given network from certain classes of r
The activity of a sparse network of leaky integrate-and-fire neurons is carefully revisited with reference to a regime of a bona-fide asynchronous dynamics. The study is preceded by a finite-size scaling analysis, carried out to identify a setup wher
Neurons modeled by the Rulkov map display a variety of dynamic regimes that include tonic spikes and chaotic bursting. Here we study an ensemble of bursting neurons coupled with the Watts-Strogatz small-world topology. We characterize the sequences o