ﻻ يوجد ملخص باللغة العربية
It has recently been shown that the phenomenologically successful pattern of cobimaximal neutrino mixing ($theta_{13} eq 0$, $theta_{23} = pi/4$, and $delta_{CP} = pm pi/2$) may be achieved in the context of the non-Abelian discrete symmetry $A_4$, if the neutrino mass matrix is diagonalized by an orthogonal matrix ${cal O}$. We study how this pattern would deviate if ${cal O}$ is replaced by an unitary matrix.
I propose a model of radiative charged-lepton and neutrino masses with $A_4$ symmetry. The soft breaking of $A_4$ to $Z_3$ lepton triality is accomplished by dimension-three terms. The breaking of $Z_3$ by dimension-two terms allow cobimaximal neutri
It has recently been shown that the phenomenologically successful pattern of cobimaximal neutrino mixing ($theta_{13} eq 0$, $theta_{23} = pi/4$, and $delta_{CP} = pm pi/2$) may be achieved in the context of the non-Abelian discrete symmetry $A_4$.
We study the phenomenological implications of the modular symmetry $Gamma(3) simeq A_4$ of lepton flavors facing recent experimental data of neutrino oscillations. The mass matrices of neutrinos and charged leptons are essentially given by fixing the
In the context of A_4 symmetry, neutrino tribimaximal mixing is achieved through the breaking of A_4 to Z_3 (Z_2) in the charged-lepton (neutrino) sector respectively. The implied vacuum misalignment of the (1,1,1) and (1,0,0) directions in A_4 space
We propose a simple framework based on $Delta(27)$ that leads to the successful cobimaximal lepton mixing ansatz, thus providing a predictive explanation for leptonic mixing observables. We explore first the effective neutrino mass operators, then pr