ﻻ يوجد ملخص باللغة العربية
Assigning homogeneous boundary conditions, such as acoustic impedance, to the thermoviscous wave equations (TWE) derived by transforming the linearized Navier-Stokes equations (LNSE) to the frequency domain yields a so-called Helmholtz solver, whose output is a discrete set of complex eigenfunction and eigenvalue pairs. The proposed method -- the inverse Helmholtz solver (iHS) -- reverses such procedure by returning the value of acoustic impedance at one or more unknown impedance boundaries (IBs) of a given domain via spatial integration of the TWE for a given real-valued frequency with assigned conditions on other boundaries. The iHS procedure is applied to a second-order spatial discretization of the TWEs derived on an unstructured grid with staggered grid arrangement. The momentum equation only is extended to the center of each IB face where pressure and velocity components are co-located and treated as unknowns. One closure condition considered for the iHS is the assignment of the surface gradient of pressure phase over the IBs, corresponding to assigning the shape of the acoustic waveform at the IB. The iHS procedure is carried out independently for each frequency in order to return the complete broadband complex impedance distribution at the IBs in any desired frequency range. The iHS approach is first validated against Rotts theory for both inviscid and viscous, rectangular and circular ducts. The impedance of a geometrically complex toy cavity is then reconstructed and verified against companion full compressible unstructured Navier-Stokes simulations resolving the cavity geometry and one-dimensional impedance test tube calculations based on time-domain impedance boundary conditions (TDIBC). The iHS methodology is also shown to capture thermoacoustic effects, with reconstructed impedance values quantitatively in agreement with thermoacoustic growth rates.
Assigning boundary conditions, such as acoustic impedance, to the frequency domain thermoviscous wave equations (TWE), derived from the linearized Navier-Stokes equations (LNSE) poses a Helmholtz problem, solution to which yields a discrete set of co
This paper presents an extension of the hybrid scheme proposed by Wang et al. (J. Comput. Phys. 229 (2010) 169-180) for numerical simulation of compressible isotropic turbulence to flows with higher turbulent Mach numbers. The scheme still utilizes a
Fluid dynamics simulations of melting and crater formation at the surface of a copper cathode exposed to high plasma heat fluxes and pressure gradients are presented. The predicted deformations of the free surface and the temperature evolution inside
A numerical approach to the problem of wave scattering by many small particles is developed under the assumptions k<<1, d>>a, where a is the size of the particles and d is the distance between the neighboring particles. On the wavelength one may have
Numerical simulations of cardiovascular mass transport pose significant challenges due to the wide range of Peclet numbers and backflow at Neumann boundaries. In this paper we present and discuss several numerical tools to address these challenges in