ﻻ يوجد ملخص باللغة العربية
In this paper, we propose new randomization based algorithms for large scale linear discrete ill-posed problems with general-form regularization: ${min} |Lx|$ subject to ${min} |Ax - b|$, where $L$ is a regularization matrix. Our algorithms are inspired by the modified truncated singular value decomposition (MTSVD) method, which suits only for small to medium scale problems, and randomized SVD (RSVD) algorithms that generate good low rank approximations to $A$. We use rank-$k$ truncated randomized SVD (TRSVD) approximations to $A$ by truncating the rank-$(k+q)$ RSVD approximations to $A$, where $q$ is an oversampling parameter. The resulting algorithms are called modified TRSVD (MTRSVD) methods. At every step, we use the LSQR algorithm to solve the resulting inner least squares problem, which is proved to become better conditioned as $k$ increases so that LSQR converges faster. We present sharp bounds for the approximation accuracy of the RSVDs and TRSVDs for severely, moderately and mildly ill-posed problems, and substantially improve a known basic bound for TRSVD approximations. We prove how to choose the stopping tolerance for LSQR in order to guarantee that the computed and exact best regularized solutions have the same accuracy. Numerical experiments illustrate that the best regularized solutions by MTRSVD are as accurate as the ones by the truncated generalized singular value decomposition (TGSVD) algorithm, and at least as accurate as those by some existing truncated randomized generalized singular value decomposition (TRGSVD) algorithms.
Based on the joint bidiagonalization process of a large matrix pair ${A,L}$, we propose and develop an iterative regularization algorithm for the large scale linear discrete ill-posed problems in general-form regularization: $min|Lx| mbox{{rm subjec
Many applications in science and engineering require the solution of large linear discrete ill-posed problems that are obtained by the discretization of a Fredholm integral equation of the first kind in several space-dimensions. The matrix that defin
GMRES is one of the most popular iterative methods for the solution of large linear systems of equations that arise from the discretization of linear well-posed problems, such as Dirichlet boundary value problems for elliptic partial differential equ
The hierarchical SVD provides a quasi-best low rank approximation of high dimensional data in the hierarchical Tucker framework. Similar to the SVD for matrices, it provides a fundamental but expensive tool for tensor computations. In the present wor
Quaternion matrix approximation problems construct the approximated matrix via the quaternion singular value decomposition (SVD) by selecting some singular value decomposition (SVD) triplets of quaternion matrices. In applications such as color image