ترغب بنشر مسار تعليمي؟ اضغط هنا

Simulations of imaging extended sources using the GMRT and the U-GMRT: Implications to observing strategies

54   0   0.0 ( 0 )
 نشر من قبل Ruta Kale
 تاريخ النشر 2017
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Astrophysical sources such as radio halos and relics in galaxy clusters, supernova remnants and radio galaxies have angular sizes from a few to several $10$s of arcminutes. In radio interferometric imaging of such sources, the largest angular size of the source that can be imaged is limited by the shortest projected baseline towards the source. It is essential to determine the limitations of the recovery of the extended features on various angular scales in order to interpret the radio image. We simulated observations of a model extended source of Gaussian shape with the Giant Metrewave Radio Telescope (GMRT) using Common Astronomy Software Applications (CASA). The recovery in flux density and in morphology of the model source was quantified in a variety of observing cases with changing source properties and the uv-coverage. If $theta_{lar}$ is the largest angular scale sampled in an observation with the GMRT, then $>80%$ recovery of a source of size $0.3timestheta_{lar}$ is possible. The upgraded GMRT (U-GMRT) providing 200 MHz instantaneous bandwidth between 300 - 500 MHz will allow a factor of two better recovery of a source of size $theta_{lar}$ as compared to the GMRT at 300 MHz with 33 MHz bandwidth. We provide quantitative estimates for the improvement in extended source recovery in observations at low elevations and long durations. The presented simulations can be carried out for future radio telescopes such as the Square Kilometre Array (SKA) for optimisation of observing strategies to image extended radio sources.



قيم البحث

اقرأ أيضاً

The GMRT Online Archive now houses over 120 terabytes of interferometric observations obtained with the GMRT since the observatory began operating as a facility in 2002. The utility of this vast data archive, likely the largest of any Indian telescop e, can be significantly enhanced if first look (and where possible, science ready) processed images can be made available to the user community. We have initiated a project to pipeline process GMRT images in the 150, 240, 325 and 610 MHz bands. The thousands of processed continuum images that we will produce will prove useful in studies of distant galaxy clusters, radio AGN, as well as nearby galaxies and star forming regions. Besides the scientific returns, a uniform data processing pipeline run on a large volume of data can be used in other interesting ways. For example, we will be able to measure various performance characteristics of the GMRT telescope and their dependence on waveband, time of day, RFI environment, backend, galactic latitude etc. in a systematic way. A variety of data products such as calibrated UVFITS data, sky images and AIPS processing logs will be delivered to users via a web-based interface. Data products will be compatible with standard Virtual Observatory protocols.
We have used archival GMRT data to image and study 39 galaxy clusters. These observations were made as part of the GMRT Key Project on galaxy clusters between 2001 and 2004. The observations presented in this sample include 14 observations at 610 MHz , 29 at 325 MHz and 3 at 244 MHz covering a redshift range of 0.02 to 0.62. Multi-frequency observations were made for 8 clusters. We analysed the clusters using the SPAM processing software and detected the presence of radio halo emission for the first time in the clusters RXC J0510-0801 and RXC J2211.7-0349. We also confirmed the presence of extended emission in 11 clusters which were known from the literature. In clusters where halos were not detected upper limits were placed using our own semi-automated program. We plot our detections and non-detections on the empirical $L_X-P_{1.4}$ and $M_{500}-P_{1.4}$ relation in radio halo clusters and discuss the results. The best fits follow a power law of the form $L_{500} propto P_{1.4}^{1.82}$ and $M_{500} propto P_{1.4}^{3.001}$ which is in accordance with the best estimates in the literature.
138 - R. Kale 2015
The intra-cluster medium contains cosmic rays and magnetic fields that are manifested through the large scale synchrotron sources, termed as radio halos, relics and mini-halos. The Extended Giant Metrewave Radio Telescope (GMRT) Radio Halo Survey (EG RHS) is an extension of the GMRT Radio Halo Survey (GRHS) designed to search for radio halos using GMRT 610/235 MHz observations. The GRHS+EGRHS consists of 64 clusters in the redshift range 0.2 -- 0.4 that have an X-ray luminosity larger than 5x10^44 erg/s in the 0.1 -- 2.4 keV band and with declinations > -31 deg in the REFLEX and eBCS X-ray cluster catalogues. In this second paper in the series, GMRT 610/235 MHz data on the last batch of 11 galaxy clusters and the statistical analysis of the full sample are presented. A new mini-halo in RXJ2129.6+0005 and candidate diffuse sources in Z5247, A2552 and Z1953 are discovered. A unique feature of this survey are the upper limits on the detections of 1 Mpc sized radio halos; 4 new are presented here making a total of 31 in the survey. Of the sample, 58 clusters that have adequately sensitive radio information were used to obtain the most accurate occurrence fractions so far. The occurrence of radio halos in our X-ray selected sample is ~22%, that of mini-halos is 13% and that of relics is ~5%. The radio power - X-ray luminosity diagrams for the radio halos and mini-halos with the detections and upper limits are presented. The morphological estimators namely, centroid shift (w), concentration parameter (c) and power ratios (P_3/P_0) derived from the Chandra X-ray images are used as proxies for the dynamical states of the GRHS+EGRHS clusters. The clusters with radio halos and mini-halos occupy distinct quadrants in the c-w, c-P_3/P_0 and w - P_3/P_0 planes, corresponding to the more and less morphological disturbance, respectively. The non-detections span both the quadrants.
We report quasi-simultaneous GMRT observations of seven extragalactic radio sources at 150, 325, 610 and 1400 MHz, in an attempt to accurately define their radio continuum spectra, particularly at frequencies below the observed spectral turnover. We had previously identified these sources as candidates for a sharply inverted integrated radio spectrum whose slope is close to, or even exceeds $alpha_c$ = +2.5, the theoretical limit due to synchrotron self-absorption (SSA) in a source of incoherent synchrotron radiation arising from relativistic particles with the canonical (i.e., power-law) energy distribution. We find that four out of the seven candidates have an inverted radio spectrum with a slope close to or exceeding +2.0, while the critical spectral slope $alpha_c$ is exceeded in at least one case. These sources, together with another one or two reported in very recent literature, may well be the archetypes of an extremely rare class, from the standpoint of violation of the SSA limit in compact extragalactic radio sources. However, the alternative possibility that free-free absorption is responsible for their ultra-sharp spectral turnover cannot yet be discounted.
We have carried out a deep (150 micro Jy rms) P-band, continuum imaging survey of about 40 square degrees of sky in the XMM-LSS, Lockman Hole and ELAIS-N1 fields with the GMRT. Our deep radio data, combined with deep archival observations in the X-ra y (XMM/Chandra), optical (SDSS, CFHTLS), near-infrared (UKIDSS, VISTA/VIDEO), mid-infrared (Spitzer/SWIRE, Spitzer/SERVS) and far-infrared (Spitzer/SWIRE, Herschel/HerMES) will enable us to obtain an accurate census of star-forming and active galaxies out to z~2. This panchromatic coverage enables accurate determination of photometric redshifts and accurate modeling of the spectral energy distribution. We are using our large, merged photometric catalog of over 10000 galaxies to pursue a number of science goals.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا