ﻻ يوجد ملخص باللغة العربية
We provide an assessment of the energy dependence of key measurements within the scope of the machine parameters for a U.S. based Electron-Ion Collider (EIC) outlined in the EIC White Paper. We first examine the importance of the physics underlying these measurements in the context of the outstanding questions in nuclear science. We then demonstrate, through detailed simulations of the measurements, that the likelihood of transformational scientific insights is greatly enhanced by making the energy range and reach of the EIC as large as practically feasible.
Lepton scattering is an established ideal tool for studying inner structure of small particles such as nucleons as well as nuclei. As a future high energy nuclear physics project, an Electron-ion collider in China (EicC) has been proposed. It will be
We discuss the prospects of using jets as precision probes in electron-nucleus collisions at the future Electron-Ion Collider. Jets produced in deep-inelastic scattering can be calibrated by a measurement of the scattered electron. Such electron-jet
Understanding the origin and dynamics of hadron structure and in turn that of atomic nuclei is a central goal of nuclear physics. This challenge entails the questions of how does the roughly 1 GeV mass-scale that characterizes atomic nuclei appear; w
This White Paper presents the science case of an Electron-Ion Collider (EIC), focused on the structure and interactions of gluon-dominated matter, with the intent to articulate it to the broader nuclear science community. It was commissioned by the m
A precise determination of absolute luminosity, using the bremsstrahlung process, at the future Electron-Ion Collider (EIC) will be very demanding, and its three major challenges are discussed herein. First, the bremsstrahlung rate suppression due to