ترغب بنشر مسار تعليمي؟ اضغط هنا

Ball characterizations in spaces of constant curvature

115   0   0.0 ( 0 )
 نشر من قبل Endre Makai Jr.
 تاريخ النشر 2017
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

High proved the following theorem. If the intersections of any two congruent copies of a plane convex body are centrally symmetric, then this body is a circle. In our paper we extend the theorem of High to spherical, Euclidean and hyperbolic spaces, under some regularity assumptions. Suppose that in any of these spaces there is a pair of closed convex sets of class $C^2_+$ with interior points, different from the whole space, and the intersections of any congruent copies of these sets are centrally symmetric (provided they have non-empty interiors). Then our sets are congruent balls. Under the same hypotheses, but if we require only central symmetry of small intersections, then our sets are either congruent balls, or paraballs, or have as connected components of their boundaries congruent hyperspheres (and the converse implication also holds). Under the same hypotheses, if we require central symmetry of all compact intersections, then either our sets are congruent balls or paraballs, or have as connected components of their boundaries congruent hyperspheres, and either $d ge 3$, or $d=2$ and one of the sets is bounded by one hypercycle, or both sets are congruent parallel domains of straight lines, or there are no more compact intersections than those bounded by two finite hypercycle arcs (and the converse implication also holds). We also prove a dual theorem. If in any of these spaces there is a pair of smooth closed convex sets, such that both of them have supporting spheres at any of their boundary points --- for $S^d$ of radius less than $ pi /2$ --- and the closed convex hulls of any congruent copies of these sets are centrally symmetric, then our sets are congruent balls.



قيم البحث

اقرأ أيضاً

This paper provides upper and lower bounds on the kissing number of congruent radius $r > 0$ spheres in hyperbolic $mathbb{H}^n$ and spherical $mathbb{S}^n$ spaces, for $ngeq 2$. For that purpose, the kissing number is replaced by the kissing functio n $kappa_H(n, r)$, resp. $kappa_S(n, r)$, which depends on the dimension $n$ and the radius $r$. After we obtain some theoretical upper and lower bounds for $kappa_H(n, r)$, we study their asymptotic behaviour and show, in particular, that $kappa_H(n,r) sim (n-1) cdot d_{n-1} cdot B(frac{n-1}{2}, frac{1}{2}) cdot e^{(n-1) r}$, where $d_n$ is the sphere packing density in $mathbb{R}^n$, and $B$ is the beta-function. Then we produce numeric upper bounds by solving a suitable semidefinite program, as well as lower bounds coming from concrete spherical codes. A similar approach allows us to locate the values of $kappa_S(n, r)$, for $n= 3,, 4$, over subintervals in $[0, pi]$ with relatively high accuracy.
113 - Alexey Glazyrin 2017
A contact graph of a packing of closed balls is a graph with balls as vertices and pairs of tangent balls as edges. We prove that the average degree of the contact graph of a packing of balls (with possibly different radii) in $mathbb{R}^3$ is not gr eater than $13.92$. We also find new upper bounds for the average degree of contact graphs in $mathbb{R}^4$ and $mathbb{R}^5$.
In arbitrary Carnot groups we study intrinsic graphs of maps with horizontal target. These graphs are $C^1_H$ regular exactly when the map is uniformly intrinsically differentiable. Our first main result characterizes the uniformly intrinsic differen tiability by means of Holder properties along the projections of left-invariant vector fields on the graph. We strengthen the result in step-2 Carnot groups for intrinsic real-valued maps by only requiring horizontal regularity. We remark that such a refinement is not possible already in the easiest step-3 group. As a by-product of independent interest, in every Carnot group we prove an area-formula for uniformly intrinsically differentiable real-valued maps. We also explicitly write the area element in terms of the intrinsic derivatives of the map.
Second-order conformal quantum superintegrable systems in 2 dimensions are Laplace equations on a manifold with an added scalar potential and $3$ independent 2nd order conformal symmetry operators. They encode all the information about 2D Helmholtz o r time-independent Schrodinger superintegrable systems in an efficient manner: Each of these systems admits a quadratic symmetry algebra (not usually a Lie algebra) and is multiseparable. We study the separation equations for the systems as a family rather than separate cases. We show that the separation equations comprise all of the various types of hypergeometric and Heun equations in full generality. In particular, they yield all of the 1D Schrodinger exactly solvable (ES) and quasi-exactly solvable (QES) systems related to the Heun operator. We focus on complex constant curvature spaces and show explicitly that there are 8 pairs of Laplace separation types and these types account for all separable coordinates on the 20 flat space and 9 2-sphere Helmholtz superintegrable systems, including those for the constant potential case. The different systems are related by Stackel transforms, by the symmetry algebras and by Bocher contractions of the conformal algebra so(4,C) to itself, which enables all systems to be derived from a single one: the generic potential on the complex 2-sphere. This approach facilitates a unified view of special function theory, incorporating hypergeometric and Heun functions in full generality.
We provide new characterizations of Sobolev ad BV spaces in doubling and Poincare metric spaces in the spirit of the Bourgain-Brezis-Mironescu and Nguyen limit formulas holding in domains of R^N.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا