ﻻ يوجد ملخص باللغة العربية
High proved the following theorem. If the intersections of any two congruent copies of a plane convex body are centrally symmetric, then this body is a circle. In our paper we extend the theorem of High to spherical, Euclidean and hyperbolic spaces, under some regularity assumptions. Suppose that in any of these spaces there is a pair of closed convex sets of class $C^2_+$ with interior points, different from the whole space, and the intersections of any congruent copies of these sets are centrally symmetric (provided they have non-empty interiors). Then our sets are congruent balls. Under the same hypotheses, but if we require only central symmetry of small intersections, then our sets are either congruent balls, or paraballs, or have as connected components of their boundaries congruent hyperspheres (and the converse implication also holds). Under the same hypotheses, if we require central symmetry of all compact intersections, then either our sets are congruent balls or paraballs, or have as connected components of their boundaries congruent hyperspheres, and either $d ge 3$, or $d=2$ and one of the sets is bounded by one hypercycle, or both sets are congruent parallel domains of straight lines, or there are no more compact intersections than those bounded by two finite hypercycle arcs (and the converse implication also holds). We also prove a dual theorem. If in any of these spaces there is a pair of smooth closed convex sets, such that both of them have supporting spheres at any of their boundary points --- for $S^d$ of radius less than $ pi /2$ --- and the closed convex hulls of any congruent copies of these sets are centrally symmetric, then our sets are congruent balls.
This paper provides upper and lower bounds on the kissing number of congruent radius $r > 0$ spheres in hyperbolic $mathbb{H}^n$ and spherical $mathbb{S}^n$ spaces, for $ngeq 2$. For that purpose, the kissing number is replaced by the kissing functio
A contact graph of a packing of closed balls is a graph with balls as vertices and pairs of tangent balls as edges. We prove that the average degree of the contact graph of a packing of balls (with possibly different radii) in $mathbb{R}^3$ is not gr
In arbitrary Carnot groups we study intrinsic graphs of maps with horizontal target. These graphs are $C^1_H$ regular exactly when the map is uniformly intrinsically differentiable. Our first main result characterizes the uniformly intrinsic differen
Second-order conformal quantum superintegrable systems in 2 dimensions are Laplace equations on a manifold with an added scalar potential and $3$ independent 2nd order conformal symmetry operators. They encode all the information about 2D Helmholtz o
We provide new characterizations of Sobolev ad BV spaces in doubling and Poincare metric spaces in the spirit of the Bourgain-Brezis-Mironescu and Nguyen limit formulas holding in domains of R^N.