ﻻ يوجد ملخص باللغة العربية
It is well-known that the verification of partial correctness properties of imperative programs can be reduced to the satisfiability problem for constrained Horn clauses (CHCs). However, state-of-the-art solvers for CHCs (CHC solvers) based on predicate abstraction are sometimes unable to verify satisfiability because they look for models that are definable in a given class A of constraints, called A-definable models. We introduce a transformation technique, called Predicate Pairing (PP), which is able, in many interesting cases, to transform a set of clauses into an equisatisfiable set whose satisfiability can be proved by finding an A-definable model, and hence can be effectively verified by CHC solvers. We prove that, under very general conditions on A, the unfold/fold transformation rules preserve the existence of an A-definable model, i.e., if the original clauses have an A-definable model, then the transformed clauses have an A-definable model. The converse does not hold in general, and we provide suitable conditions under which the transformed clauses have an A-definable model iff the original ones have an A-definable model. Then, we present the PP strategy which guides the application of the transformation rules with the objective of deriving a set of clauses whose satisfiability can be proved by looking for A-definable models. PP introduces a new predicate defined by the conjunction of two predicates together with some constraints. We show through some examples that an A-definable model may exist for the new predicate even if it does not exist for its defining atomic conjuncts. We also present some case studies showing that PP plays a crucial role in the verification of relational properties of programs (e.g., program equivalence and non-interference). Finally, we perform an experimental evaluation to assess the effectiveness of PP in increasing the power of CHC solving.
Relational verification is a technique that aims at proving properties that relate two different program fragments, or two different program runs. It has been shown that constrained Horn clauses (CHCs) can effectively be used for relational verificat
This volume contains the post-proceedings of the 8th Workshop on Horn Clauses for Verification and Synthesis (HCVS), which took place virtually due to Covid-19 pandemic as an affiliated workshop of ETAPS.
This paper surveys recent work on applying analysis and transformation techniques that originate in the field of constraint logic programming (CLP) to the problem of verifying software systems. We present specialisation-based techniques for translati
We present a method for verifying properties of time-aware business processes, that is, business process where time constraints on the activities are explicitly taken into account. Business processes are specified using an extension of the Business P
VerifyThis is a series of program verification competitions that emphasize the human aspect: participants tackle the verification of detailed behavioral properties -- something that lies beyond the capabilities of fully automatic verification, and re