ﻻ يوجد ملخص باللغة العربية
Unification of Randall-Sundrum and Regge-Teitelboim brane cosmologies gives birth to a serendipitous Higgs-deSitter interplay. A localized Dvali-Gabadadze-Porrati scalar field, governed by a particular (analytically derived) double-well quartic potential, becomes a mandatory ingredient for supporting a deSitter brane universe. When upgraded to a general Higgs potential, the brane surface tension gets quantized, resembling a Hydrogen atom spectrum, with deSitter universe serving as the ground state. This reflects the local/global structure of the Euclidean manifold: From finite energy density no-boundary initial conditions, via a novel acceleration divide filter, to exact matching conditions at the exclusive nucleation point. Imaginary time periodicity comes as a bonus, with the associated Hawking temperature vanishing at the continuum limit. Upon spontaneous creation, while a finite number of levels describe universes dominated by a residual dark energy combined with damped matter oscillations, an infinite tower of excited levels undergo a Big Crunch.
In this article, we study a type of one-field approach for open inflationary universe scenario in the context of braneworld models with a Gauss-Bonnet correction term. For a one-bubble universe model, we determine and characterize the existence of th
Quantum gravity of a brane-like Universe is formulated, and its Einstein limit is approached. Regge-Teitelboim embedding of Arnowitt-Deser-Misner formalism is carried out. Invoking a novel Lagrange multiplier, accompanying the lapse function and the
We consider spatially homogeneous and isotropic cosmologies with non-zero torsion. Given the high symmetry of these universes, we adopt a specific form for the torsion tensor that preserves the homogeneity and isotropy of the spatial surfaces. Employ
In classical General Relativity, the values of fields on spacetime are uniquely determined by their values at an initial time within the domain of dependence of this initial data surface. However, it may occur that the spacetime under consideration e
We study the spontaneously induced general relativity (GR) from the scalar-tensor gravity. We demonstrate by numerical methods that a novel inner core can be connected to the Schwarzschild exterior with cosmological constants and any sectional curvat