ترغب بنشر مسار تعليمي؟ اضغط هنا

Theoretical study of magnetism induced by proximity effect in a ferromagnetic Josephson junction with a normal metal

115   0   0.0 ( 0 )
 نشر من قبل Shin-Ichi Hikino
 تاريخ النشر 2017
  مجال البحث فيزياء
والبحث باللغة English
 تأليف Shin-ichi Hikino




اسأل ChatGPT حول البحث

We theoretically study the magnetism induced by the proximity effect in the normal metal of ferromagnetic Josephson junction composed of two $s$-wave superconductors separated by ferromagnetic metal/normal metal/ferromagnetic metal junction (${S}/{F}/{N}/{F}/{S}$ junction). We calculate the magnetization in the $N$ by solving the Eilenberger equation. We show that the magnetization arises in the ${N}$ when the product of anomalous Greens functions of the spin-triplet even-frequency odd-parity Cooper pair and spin-singlet odd-frequency odd-parity Cooper pair in the ${N}$ has a finite value. The induced magnetization $M(d,theta)$ can be decomposed into two parts, $M(d,theta)=M^{rm I}(d)+M^{rm II}(d,theta)$, where $d$ is the thickness of $N$ and $theta$ is superconducting phase difference between two ${S}$s. Therefore, $theta$ dependence of $M(d,theta)$ allows us to control the amplitude of magnetization by changing $theta$. The variation of $M(d,theta)$ with $theta$ is indeed the good evidence of the magnetization induced by the proximity effect, since some methods of magnetization measurement pick up total magnetization in the ${S}/{F}/{N}/{F}/{S}$ junction.

قيم البحث

اقرأ أيضاً

We theoretically study the Josephson effect in a superconductor/normal metal/superconductor ({it S}/{it N}/{it S}) Josephson junction composed of $s$-wave {it S}s with {it N} which is sandwiched by two ferromagnetic insulators ({it F}s), forming a sp in valve, in the vertical direction of the junction. We show that the 0-$pi$ transition of the Josephson critical current occurs with increasing the thickness of {it N} along the junction. This transition is due to the magnetic proximity effect (MPE) which induces ferromagnetic magnetization in the {it N}. Moreover, we find that, even for fixed thickness of {it N}, the proposed Josephson junction with the spin valve can be switched from $pi$ to 0 states and vice versa by varying the magnetization configuration (parallel or antiparallel) of two {it F}s. We also examine the effect of spin-orbit scattering on the Josephson critical current and argue that the 0-$pi$ transition found here can be experimentally observed within the current nanofabrication techniques, thus indicating a promising potential of this junction as a 0-$pi$ switching device operated reversibly with varying the magnetic configuration in the spin valve by, e.g., applying an external magnetic field. %with the magnetization configuration in the spin valve. Our results not only provide possible applications in superconducting electronics but also suggest the importance of a fundamental concept of MPE in nanostructures of multilayer {it N}/{it F} systems.
We study the thermodynamic properties of a superconductor/normal metal/superconductor Josephson junction {in the short limit}. Owing to the proximity effect, such a junction constitutes a thermodynamic system where {phase difference}, supercurrent, t emperature and entropy are thermodynamical variables connected by equations of state. These allow conceiving quasi-static processes that we characterize in terms of heat and work exchanged. Finally, we combine such processes to construct a Josephson-based Otto and Stirling cycles. We study the related performance in both engine and refrigerator operating mode.
217 - M. Houzet 2008
The Josephson current in a diffusive superconductor/ferromagnet/superconductor junction with precessing magnetization is calculated within the quasiclassical theory of superconductivity. When the junction is phase-biased, a stationary current (withou t a.c. component) can flow through it despite the non-equilibrium condition. A large critical current is predicted due to a dynamically induced long range triplet proximity effect. Such effect could be observed in a conventional hybrid device close to the ferromagnetic resonance.
108 - Shin-ichi Hikino 2018
We theoretically investigate the magnetization inside a normal metal containing the Rashba spin-orbit interaction (RSOI) induced by the proximity effect in an s-wave superconductor/normal metal/ferromagnetic metal/s-wave superconductor (S/N/F/S) Jose phson junction. By solving the linearized Usadel equation taking account of the RSOI,we find that the direction of the magnetization induced by the proximity effect in N can be reversed by tuning the RSOI.Moreover, we also find that the direction of the magnetization inside N can be reversed by changing the superconducting phase difference, i.e., Josephson phase. From these results, it is expected that the dependence of the magnetization on the RSOI and Josephson phase can be applied to superconducting spintronics.
Using the Usadel equation approach, we provide a compact formalism to calculate the critical current density of 21 different types of ferromagnetic (F) Josephson junctions containing insulating (I) and normal metal (N) layers in the weak link regions . In particular, we obtain that even a thin additional N layer may shift the 0-$pi$ transitions to larger or smaller values of the thickness $d_F$ of the ferromagnet, depending on its conducting properties. For certain values of $d_F$, a 0-$pi$ transition can even be achieved by changing only the N layer thickness. We use our model to fit experimental data of SIFS and SINFS tunnel junctions, where S is a superconducting electrode.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا