ترغب بنشر مسار تعليمي؟ اضغط هنا

High-fidelity Rydberg quantum gate via a two-atom dark state

142   0   0.0 ( 0 )
 نشر من قبل David Petrosyan
 تاريخ النشر 2017
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We propose a two-qubit gate for neutral atoms in which one of the logical state components adiabatically follows a two-atom dark state formed by the laser coupling to a Rydberg state and a strong, resonant dipole-dipole exchange interaction between two Rydberg excited atoms. Our gate exhibits optimal scaling of the intrinsic error probability $E propto (Btau)^{-1}$ with the interatomic interaction strength $B$ and the Rydberg state lifetime $tau$. Moreover, the gate is resilient to variations in the interaction strength, and even for finite probability of double Rydberg excitation, the gate does not excite atomic motion and experiences no decoherence due to internal-translational entanglement.



قيم البحث

اقرأ أيضاً

We present a detailed error analysis of a Rydberg blockade mediated controlled-NOT quantum gate between two neutral atoms as demonstrated recently in Phys. Rev. Lett. 104, 010503 (2010) and Phys. Rev. A 82, 030306 (2010). Numerical solutions of a mas ter equation for the gate dynamics, including all known sources of technical error, are shown to be in good agreement with experiments. The primary sources of gate error are identified and suggestions given for future improvements. We also present numerical simulations of quantum process tomography to find the intrinsic fidelity, neglecting technical errors, of a Rydberg blockade controlled phase gate. The gate fidelity is characterized using trace overlap and trace distance measures. We show that the trace distance is linearly sensitive to errors arising from the finite Rydberg blockade shift and introduce a modified pulse sequence which corrects the linear errors. Our analysis shows that the intrinsic gate error extracted from simulated quantum process tomography can be under 0.002 for specific states of $^{87}$Rb or Cs atoms. The relation between the process fidelity and the gate error probability used in calculations of fault tolerance thresholds is discussed.
We propose $mathrm{SQiSW}$, the matrix square root of the standard $mathrm{iSWAP}$ gate, as a native two-qubit gate for superconducting quantum computing. We show numerically that it has potential for an ultra-high fidelity implementation as its gate time is half of that of $mathrm{iSWAP}$, but at the same time it possesses powerful information processing capabilities in both the compilation of arbitrary two-qubit gates and the generation of large-scale entangled W-like states. Even though it is half of an $mathrm{iSWAP}$ gate, its capabilities surprisingly rival and even surpass that of $mathrm{iSWAP}$ or other incumbent native two-qubit gates such as $mathrm{CNOT}$. To complete the case for its candidacy, we propose a detailed compilation, calibration and benchmarking framework. In particular, we propose a variant of randomized benchmarking called interleaved fully randomized benchmarking (iFRB) which provides a general and unified solution for benchmarking non-Clifford gates such as $mathrm{SQiSW}$. For the reasons above, we believe that the $mathrm{SQiSW}$ gate is worth further study and consideration as a native two-qubit gate for both fault-tolerant and noisy intermediate-scale quantum (NISQ) computation.
170 - Zhuo Fu , Peng Xu , Yuan Sun 2021
Neutral atom platform has become an attractive choice to study the science of quantum information and quantum simulation, where intense efforts have been devoted to the entangling processes between individual atoms. For the development of this area, two-qubit controlled-PHASE gate via Rydberg blockade is one of the most essential elements. Recent theoretical studies have suggested the advantages of introducing non-trivial waveform modulation into the gate protocol, which is anticipated to improve its performance towards the next stage. We report our recent experimental results in realizing a two-qubit controlled-PHASE($C_Z$) gate via off-resonant modulated driving(ORMD) embedded in two-photon transition for Rb atoms. It relies upon a single modulated driving pulse with a carefully calculated smooth waveform to gain the appropriate phase accumulations required by the two-qubit gate. Combining this $C_Z$ gate with global microwave pulses, two-atom entanglement is generated with the raw fidelity of 0.945(6). Accounting for state preparation and measurement (SPAM) errors, we extract the entanglement operation fidelity to be 0.980(7). Our work features completing the $C_Z$ gate operation within a single pulse to avoid shelved Rydberg population, thus demonstrate another promising route for realizing high-fidelity two-qubit gate for neutral atom platform.
We show that the use of shaped pulses improves the fidelity of a Rydberg blockade two-qubit entangling gate by several orders of magnitude compared to previous protocols based on square pulses or optimal control pulses. Using analytical Derivative Re moval by Adiabatic Gate (DRAG) pulses that reduce excitation of primary leakage states and an analytical method of finding the optimal Rydberg blockade we generate Bell states with a fidelity of $F>0.9999$ in a 300 K environment for a gate time of only $50;{rm ns}$, which is an order of magnitude faster than previous protocols. These results establish the potential of neutral atom qubits with Rydberg blockade gates for scalable quantum computation.
To date, the highest fidelity quantum logic gates between two qubits have been achieved with variations on the geometric-phase gate in trapped ions, with the two leading variants being the Molmer-Sorensen gate and the light-shift (LS) gate. Both of t hese approaches have their respective advantages and challenges. For example, the latter is technically simpler and is natively insensitive to optical phases, but it has not been made to work directly on a clock-state qubit. We present a new technique for implementing the LS gate that combines the best features of these two approaches: By using a small ($sim {rm MHz}$) detuning from a narrow (dipole-forbidden) optical transition, we are able to operate an LS gate directly on hyperfine clock states, achieving gate fidelities of $99.74(4)%$ using modest laser power at visible wavelengths. Current gate infidelities appear to be dominated by technical noise, and theoretical modeling suggests a path towards gate fidelity above $99.99%$.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا