ﻻ يوجد ملخص باللغة العربية
We present the results from 1.5 and 5 GHz phase-referenced VLBA and 1.5 GHz Karl G. Jansky Very Large Array (VLA) observations of the Seyfert 2 galaxy KISSR1219, which exhibits double peaked emission lines in its optical spectrum. The VLA and VLBA data reveal a one-sided core-jet structure at roughly the same position angles, providing evidence of an AGN outflow. The absence of dual parsec-scale radio cores puts the binary black hole picture in doubt for the case of KISSR1219. The high brightness temperatures of the parsec-scale core and jet components ($>10^6$ K) are consistent with this interpretation. Doppler boosting with jet speeds of $gtrsim0.55c$ to $gtrsim0.25c$, going from parsec- to kpc-scales, at a jet inclination $gtrsim50^circ$ can explain the jet one-sidedness in this Seyfert 2 galaxy. A blue-shifted broad emission line component in [O {sc iii}] is also indicative of an outflow in the emission line gas at a velocity of $sim350$ km s$^{-1}$, while the [O {sc i}] doublet lines suggest the presence of shock-heated gas. A detailed line ratio study using the MAPPINGS III code further suggests that a shock+precursor model can explain the line ionization data well. Overall, our data suggest that the radio outflow in KISSR1219 is pushing the emission line clouds, both ahead of the jet and in a lateral direction, giving rise to the double peak emission line spectra.
The galaxy 3C,316 is the brightest in the radio band among the optically-selected candidates exhibiting double-peaked narrow optical emission lines. Observations with the Very Large Array (VLA), Multi-Element Remotely Linked Interferometer Network (e
We discuss results from very long baseline interferometry (VLBI) observations of two Seyfert galaxies with double peaked emission lines in their SDSS optical spectra. Such AGN are potential candidates for the presence of binary black holes, which can
We present results from spectroscopic observations of AT 2018hyz, a transient discovered by the ASAS-SN survey at an absolute magnitude of $M_Vsim -20.2$ mag, in the nucleus of a quiescent galaxy with strong Balmer absorption lines. AT 2018hyz shows
We present a new sample of 116 double-peaked Balmer line Active Galactic Nuclei (AGN) selected from the Sloan Digital Sky Survey. Double-peaked emission lines are believed to originate in the accretion disks of AGN, a few hundred gravitational radii
AGN with double-peaked narrow lines (DPAGN) may be caused by kiloparsec scale binary AGN, bipolar outflows, or rotating gaseous disks. We examine the class of DPAGN in which the two narrow line components have closely similar intensity as being espec