ترغب بنشر مسار تعليمي؟ اضغط هنا

Non-Markovian dynamics of few emitters in a laser-driven cavity

112   0   0.0 ( 0 )
 نشر من قبل Daniel Pagel
 تاريخ النشر 2017
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We study the laser-driven Dicke model beyond the rotating-wave approximation. For weak coupling of the system to environmental degrees of freedom the dissipative dynamics of the emitter-cavity system is described by the Floquet master equation. Projection of the system evolution onto the emitter degrees of freedom results in non-Markovian behavior. We quantify the non-Markovianity of the resulting emitter dynamics and show that this quantity can be used as an indicator of the dissipative quantum phase transition occurring at high driving amplitudes.



قيم البحث

اقرأ أيضاً

We provide a microscopic derivation for the non-Markovian master equation for an atom-cavity system with cavity losses and show that they can induce population trapping in the atomic excited state, when the environment outside the cavity has a non-fl at spectrum. Our results apply to hybrid solid state systems and can turn out to be helpful to find the most appropriate description of leakage in the recent developments of cavity quantum electrodynamics.
We study the characteristics of the light generated by few emitters in a cavity at strong light-matter coupling. By means of the Glauber $g^{(2)}$-function we can identify clearly distinguished parameter regimes with super-Poissonian and sub-Poissoni an photon statistics. We establish a relation between the emission characteristics for one and multiple emitters, and explain its origin in terms of the photon-dressed emitter states. Cooperative effects lead to the generation of nonclassical light already at reduced light-matter coupling if the number of emitters is increased. Our results are obtained with a full input-output formalism and master equation valid also at strong light-matter coupling. We compare the behavior obtained with and without counter-rotating light-matter interaction terms in the Hamiltonian, and find that the generation of nonclassical light is robust against such modifications. Finally, we contrast our findings with the predictions of the quantum optical master equation and find that it fails entirely at predicting regimes with different photon statistics.
We study a driven two-state system interacting with a structured environment. We introduce the non-Markovian master equation ruling the system dynamics, and we derive its analytic solution for general reservoir spectra. We compare the non-Markovian d ynamics of the Bloch vector for two classes of reservoir spectra: the Ohmic and the Lorentzian reservoir. Finally, we derive the analytic conditions for complete positivity with and without the secular approximation. Interestingly, the complete positivity conditions have a transparent physical interpretation in terms of the characteristic timescales of phase diffusion and relaxation processes.
Referring to a Fano-type model qualitative analogy we develop a comprehensive basic mechanism for the laser control of the non-Markovian bath response in strongly coupled Open Quantum Systems (OQS). A converged Hierarchy Equations Of Motion (HEOM) is worked out to numerically solve the master equation of a spin-boson Hamiltonian to reach the reduced electronic density matrix of a heterojunction in the presence of strong THz laser pulses. Robust and efficient control is achieved increasing by a factor ?2 non-Markovianity measured by the time evolution of the volume of accessible states. The consequences of such fields on the central system populations and coherence are examined, putting the emphasis on the relation between the increase of non- Markovianity and the slowing down of decoherence processes.
We study the temporal correlations of the field emitted by an electromagnetic resonator coupled to a mesoscopic number of two-level emitters that are incoherently pumped by a weak external drive. We solve the master equation of the system for increas ing number of emitters and as a function of the cavity quality factor, and we identify three main regimes characterized by well distinguished statistical properties of the emitted radiation. For small cavity decay rate, the emission events are uncorrelated and the number of photons in the emitted field becomes larger than one, resembling the build-up of a laser field inside the cavity. At intermediate decay rates (as compared to the emitter-cavity coupling) and for few emitters, the statistics of the emitted radiation is bunched and strikingly dependent on the parity of the number of emitters. The latter property is related to the cooperativity of the emitters mediated by their coupling to the cavity mode, and its connection with steady state subradiance is discussed. Finally, in the bad cavity regime the typical situation of emission from a collection of individual emitters is recovered. We also analyze how the cooperative behavior evolves as a function of pure dephasing, which allows to recover the case of a classical source made of an ensemble of independent emitters, similar to what is obtained for a very leaky cavity. State-of-art techniques of Q-switch of resonant cavities, allied with the recent capability to tune single emitters in and out of resonance, suggest this system as a versatile source of different quantum states of light.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا