ﻻ يوجد ملخص باللغة العربية
We investigate four model-theoretic tameness properties in the context of least fixed-point logic over a family of finite structures. We find that each of these properties depends only on the elementary (i.e., first-order) limit theory, and we completely determine the valid entailments among them. In contrast to the context of first-order logic on arbitrary structures, the order property and independence property are equivalent in this setting. McColm conjectured that least fixed-point definability collapses to first-order definability exactly when proficiency fails. McColms conjecture is known to be false in general. However, we show that McColms conjecture is true for any family of finite structures whose limit theory is model-theoretically tame.
Assuming that $0^#$ exists, we prove that there is a structure that can effectively interpret its own jump. In particular, we get a structure $mathcal A$ such that [ Sp({mathcal A}) = {{bf x}:{bf x}in Sp ({mathcal A})}, ] where $Sp ({mathcal A})$ is
We consider equation systems of the form X_1 = f_1(X_1, ..., X_n), ..., X_n = f_n(X_1, ..., X_n) where f_1, ..., f_n are polynomials with positive real coefficients. In vector form we denote such an equation system by X = f(X) and call f a system of
Whether it be in normal form games, or in fair allocations, or in voter preferences in voting systems, a certain pattern of reasoning is common. From a particular profile, an agent or a group of agents may have an incentive to shift to a new one. Thi
Bisimulation metric is a robust behavioural semantics for probabilistic processes. Given any SOS specification of probabilistic processes, we provide a method to compute for each operator of the language its respective metric compositionality propert
We develop a denotational semantics of Linear Logic with least and greatest fixed points in coherence spaces (where both fixed points are interpreted in the same way) and in coherence spaces with totality (where they have different interpretations).