ترغب بنشر مسار تعليمي؟ اضغط هنا

Tameness in least fixed-point logic and McColms conjecture

60   0   0.0 ( 0 )
 نشر من قبل Thorsten Wissmann
 تاريخ النشر 2017
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

We investigate four model-theoretic tameness properties in the context of least fixed-point logic over a family of finite structures. We find that each of these properties depends only on the elementary (i.e., first-order) limit theory, and we completely determine the valid entailments among them. In contrast to the context of first-order logic on arbitrary structures, the order property and independence property are equivalent in this setting. McColm conjectured that least fixed-point definability collapses to first-order definability exactly when proficiency fails. McColms conjecture is known to be false in general. However, we show that McColms conjecture is true for any family of finite structures whose limit theory is model-theoretically tame.

قيم البحث

اقرأ أيضاً

205 - Antonio Montalban 2011
Assuming that $0^#$ exists, we prove that there is a structure that can effectively interpret its own jump. In particular, we get a structure $mathcal A$ such that [ Sp({mathcal A}) = {{bf x}:{bf x}in Sp ({mathcal A})}, ] where $Sp ({mathcal A})$ is the set of Turing degrees which compute a copy of $mathcal A$. It turns out that, more interesting than the result itself, is its unexpected complexity. We prove that higher-order arithmetic, which is the union of full $n$th-order arithmetic for all $n$, cannot prove the existence of such a structure.
We consider equation systems of the form X_1 = f_1(X_1, ..., X_n), ..., X_n = f_n(X_1, ..., X_n) where f_1, ..., f_n are polynomials with positive real coefficients. In vector form we denote such an equation system by X = f(X) and call f a system of positive polynomials, short SPP. Equation systems of this kind appear naturally in the analysis of stochastic models like stochastic context-free grammars (with numerous applications to natural language processing and computational biology), probabilistic programs with procedures, web-surfing models with back buttons, and branching processes. The least nonnegative solution mu f of an SPP equation X = f(X) is of central interest for these models. Etessami and Yannakakis have suggested a particular version of Newtons method to approximate mu f. We extend a result of Etessami and Yannakakis and show that Newtons method starting at 0 always converges to mu f. We obtain lower bounds on the convergence speed of the method. For so-called strongly connected SPPs we prove the existence of a threshold k_f such that for every i >= 0 the (k_f+i)-th iteration of Newtons method has at least i valid bits of mu f. The proof yields an explicit bound for k_f depending only on syntactic parameters of f. We further show that for arbitrary SPP equations Newtons method still converges linearly: there are k_f>=0 and alpha_f>0 such that for every i>=0 the (k_f+alpha_f i)-th iteration of Newtons method has at least i valid bits of mu f. The proof yields an explicit bound for alpha_f; the bound is exponential in the number of equations, but we also show that it is essentially optimal. Constructing a bound for k_f is still an open problem. Finally, we also provide a geometric interpretation of Newtons method for SPPs.
Whether it be in normal form games, or in fair allocations, or in voter preferences in voting systems, a certain pattern of reasoning is common. From a particular profile, an agent or a group of agents may have an incentive to shift to a new one. Thi s induces a natural graph structure that we call the improvement graph on the strategy space of these systems. We suggest that the monadic fixed-point logic with counting, an extension of monadic first-order logic on graphs with fixed-point and counting quantifiers, is a natural specification language on improvement graphs, and thus for a class of properties that can be interpreted across these domains. The logic has an efficient model checking algorithm (in the size of the improvement graph).
70 - Daniel Gebler 2014
Bisimulation metric is a robust behavioural semantics for probabilistic processes. Given any SOS specification of probabilistic processes, we provide a method to compute for each operator of the language its respective metric compositionality propert y. The compositionality property of an operator is defined as its modulus of continuity which gives the relative increase of the distance between processes when they are combined by that operator. The compositionality property of an operator is computed by recursively counting how many times the combined processes are copied along their evolution. The compositionality properties allow to derive an upper bound on the distance between processes by purely inspecting the operators used to specify those processes.
We develop a denotational semantics of Linear Logic with least and greatest fixed points in coherence spaces (where both fixed points are interpreted in the same way) and in coherence spaces with totality (where they have different interpretations). These constructions can be carried out in many different denotational models of LL (hypercoherences, Scott semantics, finiteness spaces etc). We also present a natural embedding of G{o}del System T in LL with fixed points thus enforcing the expressive power of this system as a programming language featuring both normalization and a huge expressive power in terms of data types.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا