ترغب بنشر مسار تعليمي؟ اضغط هنا

Excitonic Resonance Effects and Davydov Splitting in Circularly Polarized Raman Spectra of Few-Layer WSe2

118   0   0.0 ( 0 )
 نشر من قبل Kangwon Kim
 تاريخ النشر 2017
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Few-layer tungsten diselenide (WSe2) is investigated using circularly polarized Raman spectroscopy with up to eight excitation energies. The main E2g1 and A1g modes near 250 cm-1 appear as a single peak in the Raman spectrum taken without consideration of polarization but are resolved by using circularly polarized Raman scattering. The resonance behaviors of the E2g1 and A1g modes are examined. Firstly, both the E2g1 and A1g modes are enhanced near resonances with the exciton states. The A1g mode exhibits Davydov splitting for trilayers or thicker near some of the exciton resonances. The low-frequency Raman spectra show shear and breathing modes involving rigid vibrations of the layers and also exhibit strong dependence on the excitation energy. An unidentified peak at ~19 cm-1 that does not depend on the number of layers appears near resonance with the B exciton state at 1.96 eV (632.8 nm). The strengths of the intra- and inter-layer interactions are estimated by comparing the mode frequencies and Davydov splitting with the linear chain model, and the contribution of the next-nearest-neighbor interaction to the inter-layer interaction turns out to be about 34% of the nearest-neighbor interaction. Fano resonance is observed for 1.58-eV excitation, and its origin is found to be the interplay between two-phonon scattering and indirect band transition.



قيم البحث

اقرأ أيضاً

Raman spectra of few-layer WS2 have been measured with up to seven excitation energies, and peculiar resonance effects are observed. The two-phonon acoustic phonon scattering signal close to the main E2g1 peak is stronger than the main peaks for exci tations near the A or B exciton states. The low-frequency Raman spectra show a series of shear and layer-breathing modes that are useful for determining the number of layers. In addition, hitherto unidentified peaks (X1 and X2), which do not seem to depend on the layer thickness, are observed near resonances with exciton states. The polarization dependences of the two peaks are different: X1 vanishes in cross polarization, but X2 does not. At the resonance with the A exciton state, the Raman-forbidden, lowest-frequency shear mode for odd number of layers appears as strong as that for the allowed case of even number of layers. This mode also exhibits a strong Breit-Wigner-Fano line shape and an anomalous polarization behavior at this resonance.
We present Raman measurements of mono- and few-layer WS2. We study the monolayer A1 mode around 420 cm(-1) and its evolution with the number of layers. We show that with increasing layer number there is an increasing number of possible vibrational pa tterns for the out-of-plane Raman mode: in N-layer WS2 there are N Gamma-point phonons evolving from the A1 monolayer mode. For an excitation energy close to resonance with the excitonic transition energy we were able to observe all of these N components, irrespective of their Raman activity. Density functional theory calculations support the experimental findings and make it possible to attribute the modes to their respective symmetries. The findings described here are of general importance for all other phonon modes in WS2 and other layered transition metal dichalcogenide systems in the few layer regime.
We study electronic contribution to the Raman scattering signals of two-, three- and four-layer graphene with layers at one of the interfaces twisted by a small angle with respect to each other. We find that the Raman spectra of these systems feature two peaks produced by van Hove singularities in moir{e} minibands of twistronic graphene, one related to direct hybridization of Dirac states, and the other resulting from band folding caused by moir{e} superlattice. The positions of both peaks strongly depend on the twist angle, so that their detection can be used for non-invasive characterization of the twist, even in hBN-encapsulated structures.
We control the thickness of GaSe on the level of individual layers and study the corresponding optical absorption via highly sensitive differential transmission measurements. Suppression of excitonic transitions is observed when the number of layers is smaller than a critical value of 8. Through ab-initio modelling we are able to link this behavior to a fundamental change in the band structure that leads to the formation of a valence band shaped as an inverted Mexican hat in thin GaSe. The thickness-controlled modulation of the optical properties provides attractive resources for the development of functional optoelectronic devices based on a single material.
We study the second-order Raman process of mono- and few-layer MoTe$_2$, by combining {em ab initio} density functional perturbation calculations with experimental Raman spectroscopy using 532, 633 and 785 nm excitation lasers. The calculated electro nic band structure and the density of states show that the electron-photon resonance process occurs at the high-symmetry M point in the Brillouin zone, where a strong optical absorption occurs by a logarithmic Van-Hove singularity. Double resonance Raman scattering with inter-valley electron-phonon coupling connects two of the three inequivalent M points in the Brillouin zone, giving rise to second-order Raman peaks due to the M point phonons. The predicted frequencies of the second-order Raman peaks agree with the observed peak positions that cannot be assigned in terms of a first-order process. Our study attempts to supply a basic understanding of the second-order Raman process occurring in transition metal di-chalcogenides (TMDs) and may provide additional information both on the lattice dynamics and optical processes especially for TMDs with small energy band gaps such as MoTe$_2$ or at high laser excitation energy.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا